06. Application of Kp and Kc
Chemical Equilibrium

229275 Four moles of $\mathrm{PCl}_{5}$ are heated in a closed $4 \mathrm{dm}^{3}$ container to reach equilibrium at $400 \mathrm{~K}$. At equilibrium 50\% of $\mathrm{PCl}_{5}$ is dissociated. What is the value of $\mathrm{K}_{\mathrm{c}}$ for the dissociation of $\mathrm{PCl}_{5}$ in to $\mathrm{PCl}_{3}$ and $\mathrm{Cl}_{2}$ at $400 \mathrm{~K}$ ?

1 0.50
2 1.00
3 1.25
4 0.05
5 0.25
Chemical Equilibrium

229276 In the preparation of $\mathrm{CaCO}$ from $\mathrm{CaCO}_{3}$ using the equilibrium
$\mathrm{CaCO}_{3}(\mathrm{~s})$
$\rightleftharpoons \mathrm{CaCO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~s}) \mathrm{K}_{\mathrm{p}}$ is expressed as:
$\log \mathrm{K}_{\mathrm{p}}=7.282-\frac{8500}{\mathrm{~T}}$
The complete decomposition of $\mathrm{CaCO}_{3}$, the temperature in Celsius to be used is

1 1167
2 894
3 8500
4 850
Chemical Equilibrium

229277 For the equilibrium,
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$

1 $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}$
2 $\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{K}_{\mathrm{c}}}{\mathrm{RT}}$
3 $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}} \mathrm{RT}$
4 $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{2}$
Chemical Equilibrium

229278 If the equilibrium constant for the reaction, $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$ is $\mathrm{K}$, what is the equilibrium constant of
$\mathrm{HI}(\mathrm{g}) \rightleftharpoons \frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{I}_{2}(\mathrm{~g}) ?$

1 $\frac{1}{\mathrm{~K}}$
2 $\sqrt{\mathrm{K}}$
3 $\mathrm{K}$
4 $\frac{1}{\sqrt{\mathrm{K}}}$
Chemical Equilibrium

229275 Four moles of $\mathrm{PCl}_{5}$ are heated in a closed $4 \mathrm{dm}^{3}$ container to reach equilibrium at $400 \mathrm{~K}$. At equilibrium 50\% of $\mathrm{PCl}_{5}$ is dissociated. What is the value of $\mathrm{K}_{\mathrm{c}}$ for the dissociation of $\mathrm{PCl}_{5}$ in to $\mathrm{PCl}_{3}$ and $\mathrm{Cl}_{2}$ at $400 \mathrm{~K}$ ?

1 0.50
2 1.00
3 1.25
4 0.05
5 0.25
Chemical Equilibrium

229276 In the preparation of $\mathrm{CaCO}$ from $\mathrm{CaCO}_{3}$ using the equilibrium
$\mathrm{CaCO}_{3}(\mathrm{~s})$
$\rightleftharpoons \mathrm{CaCO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~s}) \mathrm{K}_{\mathrm{p}}$ is expressed as:
$\log \mathrm{K}_{\mathrm{p}}=7.282-\frac{8500}{\mathrm{~T}}$
The complete decomposition of $\mathrm{CaCO}_{3}$, the temperature in Celsius to be used is

1 1167
2 894
3 8500
4 850
Chemical Equilibrium

229277 For the equilibrium,
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$

1 $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}$
2 $\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{K}_{\mathrm{c}}}{\mathrm{RT}}$
3 $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}} \mathrm{RT}$
4 $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{2}$
Chemical Equilibrium

229278 If the equilibrium constant for the reaction, $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$ is $\mathrm{K}$, what is the equilibrium constant of
$\mathrm{HI}(\mathrm{g}) \rightleftharpoons \frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{I}_{2}(\mathrm{~g}) ?$

1 $\frac{1}{\mathrm{~K}}$
2 $\sqrt{\mathrm{K}}$
3 $\mathrm{K}$
4 $\frac{1}{\sqrt{\mathrm{K}}}$
Chemical Equilibrium

229275 Four moles of $\mathrm{PCl}_{5}$ are heated in a closed $4 \mathrm{dm}^{3}$ container to reach equilibrium at $400 \mathrm{~K}$. At equilibrium 50\% of $\mathrm{PCl}_{5}$ is dissociated. What is the value of $\mathrm{K}_{\mathrm{c}}$ for the dissociation of $\mathrm{PCl}_{5}$ in to $\mathrm{PCl}_{3}$ and $\mathrm{Cl}_{2}$ at $400 \mathrm{~K}$ ?

1 0.50
2 1.00
3 1.25
4 0.05
5 0.25
Chemical Equilibrium

229276 In the preparation of $\mathrm{CaCO}$ from $\mathrm{CaCO}_{3}$ using the equilibrium
$\mathrm{CaCO}_{3}(\mathrm{~s})$
$\rightleftharpoons \mathrm{CaCO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~s}) \mathrm{K}_{\mathrm{p}}$ is expressed as:
$\log \mathrm{K}_{\mathrm{p}}=7.282-\frac{8500}{\mathrm{~T}}$
The complete decomposition of $\mathrm{CaCO}_{3}$, the temperature in Celsius to be used is

1 1167
2 894
3 8500
4 850
Chemical Equilibrium

229277 For the equilibrium,
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$

1 $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}$
2 $\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{K}_{\mathrm{c}}}{\mathrm{RT}}$
3 $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}} \mathrm{RT}$
4 $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{2}$
Chemical Equilibrium

229278 If the equilibrium constant for the reaction, $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$ is $\mathrm{K}$, what is the equilibrium constant of
$\mathrm{HI}(\mathrm{g}) \rightleftharpoons \frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{I}_{2}(\mathrm{~g}) ?$

1 $\frac{1}{\mathrm{~K}}$
2 $\sqrt{\mathrm{K}}$
3 $\mathrm{K}$
4 $\frac{1}{\sqrt{\mathrm{K}}}$
Chemical Equilibrium

229275 Four moles of $\mathrm{PCl}_{5}$ are heated in a closed $4 \mathrm{dm}^{3}$ container to reach equilibrium at $400 \mathrm{~K}$. At equilibrium 50\% of $\mathrm{PCl}_{5}$ is dissociated. What is the value of $\mathrm{K}_{\mathrm{c}}$ for the dissociation of $\mathrm{PCl}_{5}$ in to $\mathrm{PCl}_{3}$ and $\mathrm{Cl}_{2}$ at $400 \mathrm{~K}$ ?

1 0.50
2 1.00
3 1.25
4 0.05
5 0.25
Chemical Equilibrium

229276 In the preparation of $\mathrm{CaCO}$ from $\mathrm{CaCO}_{3}$ using the equilibrium
$\mathrm{CaCO}_{3}(\mathrm{~s})$
$\rightleftharpoons \mathrm{CaCO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~s}) \mathrm{K}_{\mathrm{p}}$ is expressed as:
$\log \mathrm{K}_{\mathrm{p}}=7.282-\frac{8500}{\mathrm{~T}}$
The complete decomposition of $\mathrm{CaCO}_{3}$, the temperature in Celsius to be used is

1 1167
2 894
3 8500
4 850
Chemical Equilibrium

229277 For the equilibrium,
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$

1 $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}$
2 $\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{K}_{\mathrm{c}}}{\mathrm{RT}}$
3 $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}} \mathrm{RT}$
4 $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{2}$
Chemical Equilibrium

229278 If the equilibrium constant for the reaction, $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$ is $\mathrm{K}$, what is the equilibrium constant of
$\mathrm{HI}(\mathrm{g}) \rightleftharpoons \frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{I}_{2}(\mathrm{~g}) ?$

1 $\frac{1}{\mathrm{~K}}$
2 $\sqrt{\mathrm{K}}$
3 $\mathrm{K}$
4 $\frac{1}{\sqrt{\mathrm{K}}}$