229279
For the reaction,
$2 \mathrm{~A}(\mathrm{~g})+\mathrm{B}_{2}(\mathrm{~g}) \rightleftharpoons \quad 2 \mathrm{AB}_{2}(\mathrm{~g})$
the equilibrium constant, $K_{p}$ at $300 \mathrm{~K}$ is 16.0. The value of $K_{p}$ for $A B_{2}(g) \rightleftharpoons \quad A(g)+1 / 2 B_{2}(g)$ is
229280
For the reaction,
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$ at $400 \mathrm{~K}, \mathrm{~K}_{\mathrm{p}}=41$. Find the value of $K_{p}$ for the following reaction.
$\frac{\mathbf{1}}{\mathbf{2}} \mathbf{N}_{\mathbf{2}}(\mathrm{g})+\frac{\mathbf{3}}{\mathbf{2}} \mathbf{H}_{\mathbf{2}}(\mathrm{g}) \rightleftharpoons \mathbf{N H}_{\mathbf{3}}(\mathrm{g})$
229279
For the reaction,
$2 \mathrm{~A}(\mathrm{~g})+\mathrm{B}_{2}(\mathrm{~g}) \rightleftharpoons \quad 2 \mathrm{AB}_{2}(\mathrm{~g})$
the equilibrium constant, $K_{p}$ at $300 \mathrm{~K}$ is 16.0. The value of $K_{p}$ for $A B_{2}(g) \rightleftharpoons \quad A(g)+1 / 2 B_{2}(g)$ is
229280
For the reaction,
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$ at $400 \mathrm{~K}, \mathrm{~K}_{\mathrm{p}}=41$. Find the value of $K_{p}$ for the following reaction.
$\frac{\mathbf{1}}{\mathbf{2}} \mathbf{N}_{\mathbf{2}}(\mathrm{g})+\frac{\mathbf{3}}{\mathbf{2}} \mathbf{H}_{\mathbf{2}}(\mathrm{g}) \rightleftharpoons \mathbf{N H}_{\mathbf{3}}(\mathrm{g})$
229279
For the reaction,
$2 \mathrm{~A}(\mathrm{~g})+\mathrm{B}_{2}(\mathrm{~g}) \rightleftharpoons \quad 2 \mathrm{AB}_{2}(\mathrm{~g})$
the equilibrium constant, $K_{p}$ at $300 \mathrm{~K}$ is 16.0. The value of $K_{p}$ for $A B_{2}(g) \rightleftharpoons \quad A(g)+1 / 2 B_{2}(g)$ is
229280
For the reaction,
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$ at $400 \mathrm{~K}, \mathrm{~K}_{\mathrm{p}}=41$. Find the value of $K_{p}$ for the following reaction.
$\frac{\mathbf{1}}{\mathbf{2}} \mathbf{N}_{\mathbf{2}}(\mathrm{g})+\frac{\mathbf{3}}{\mathbf{2}} \mathbf{H}_{\mathbf{2}}(\mathrm{g}) \rightleftharpoons \mathbf{N H}_{\mathbf{3}}(\mathrm{g})$
229279
For the reaction,
$2 \mathrm{~A}(\mathrm{~g})+\mathrm{B}_{2}(\mathrm{~g}) \rightleftharpoons \quad 2 \mathrm{AB}_{2}(\mathrm{~g})$
the equilibrium constant, $K_{p}$ at $300 \mathrm{~K}$ is 16.0. The value of $K_{p}$ for $A B_{2}(g) \rightleftharpoons \quad A(g)+1 / 2 B_{2}(g)$ is
229280
For the reaction,
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$ at $400 \mathrm{~K}, \mathrm{~K}_{\mathrm{p}}=41$. Find the value of $K_{p}$ for the following reaction.
$\frac{\mathbf{1}}{\mathbf{2}} \mathbf{N}_{\mathbf{2}}(\mathrm{g})+\frac{\mathbf{3}}{\mathbf{2}} \mathbf{H}_{\mathbf{2}}(\mathrm{g}) \rightleftharpoons \mathbf{N H}_{\mathbf{3}}(\mathrm{g})$