229275 Four moles of $\mathrm{PCl}_{5}$ are heated in a closed $4 \mathrm{dm}^{3}$ container to reach equilibrium at $400 \mathrm{~K}$. At equilibrium 50\% of $\mathrm{PCl}_{5}$ is dissociated. What is the value of $\mathrm{K}_{\mathrm{c}}$ for the dissociation of $\mathrm{PCl}_{5}$ in to $\mathrm{PCl}_{3}$ and $\mathrm{Cl}_{2}$ at $400 \mathrm{~K}$ ?
229276
In the preparation of $\mathrm{CaCO}$ from $\mathrm{CaCO}_{3}$ using the equilibrium
$\mathrm{CaCO}_{3}(\mathrm{~s})$
$\rightleftharpoons \mathrm{CaCO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~s}) \mathrm{K}_{\mathrm{p}}$ is expressed as:
$\log \mathrm{K}_{\mathrm{p}}=7.282-\frac{8500}{\mathrm{~T}}$
The complete decomposition of $\mathrm{CaCO}_{3}$, the temperature in Celsius to be used is
229278
If the equilibrium constant for the reaction, $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$ is $\mathrm{K}$, what is the equilibrium constant of
$\mathrm{HI}(\mathrm{g}) \rightleftharpoons \frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{I}_{2}(\mathrm{~g}) ?$
229275 Four moles of $\mathrm{PCl}_{5}$ are heated in a closed $4 \mathrm{dm}^{3}$ container to reach equilibrium at $400 \mathrm{~K}$. At equilibrium 50\% of $\mathrm{PCl}_{5}$ is dissociated. What is the value of $\mathrm{K}_{\mathrm{c}}$ for the dissociation of $\mathrm{PCl}_{5}$ in to $\mathrm{PCl}_{3}$ and $\mathrm{Cl}_{2}$ at $400 \mathrm{~K}$ ?
229276
In the preparation of $\mathrm{CaCO}$ from $\mathrm{CaCO}_{3}$ using the equilibrium
$\mathrm{CaCO}_{3}(\mathrm{~s})$
$\rightleftharpoons \mathrm{CaCO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~s}) \mathrm{K}_{\mathrm{p}}$ is expressed as:
$\log \mathrm{K}_{\mathrm{p}}=7.282-\frac{8500}{\mathrm{~T}}$
The complete decomposition of $\mathrm{CaCO}_{3}$, the temperature in Celsius to be used is
229278
If the equilibrium constant for the reaction, $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$ is $\mathrm{K}$, what is the equilibrium constant of
$\mathrm{HI}(\mathrm{g}) \rightleftharpoons \frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{I}_{2}(\mathrm{~g}) ?$
229275 Four moles of $\mathrm{PCl}_{5}$ are heated in a closed $4 \mathrm{dm}^{3}$ container to reach equilibrium at $400 \mathrm{~K}$. At equilibrium 50\% of $\mathrm{PCl}_{5}$ is dissociated. What is the value of $\mathrm{K}_{\mathrm{c}}$ for the dissociation of $\mathrm{PCl}_{5}$ in to $\mathrm{PCl}_{3}$ and $\mathrm{Cl}_{2}$ at $400 \mathrm{~K}$ ?
229276
In the preparation of $\mathrm{CaCO}$ from $\mathrm{CaCO}_{3}$ using the equilibrium
$\mathrm{CaCO}_{3}(\mathrm{~s})$
$\rightleftharpoons \mathrm{CaCO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~s}) \mathrm{K}_{\mathrm{p}}$ is expressed as:
$\log \mathrm{K}_{\mathrm{p}}=7.282-\frac{8500}{\mathrm{~T}}$
The complete decomposition of $\mathrm{CaCO}_{3}$, the temperature in Celsius to be used is
229278
If the equilibrium constant for the reaction, $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$ is $\mathrm{K}$, what is the equilibrium constant of
$\mathrm{HI}(\mathrm{g}) \rightleftharpoons \frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{I}_{2}(\mathrm{~g}) ?$
229275 Four moles of $\mathrm{PCl}_{5}$ are heated in a closed $4 \mathrm{dm}^{3}$ container to reach equilibrium at $400 \mathrm{~K}$. At equilibrium 50\% of $\mathrm{PCl}_{5}$ is dissociated. What is the value of $\mathrm{K}_{\mathrm{c}}$ for the dissociation of $\mathrm{PCl}_{5}$ in to $\mathrm{PCl}_{3}$ and $\mathrm{Cl}_{2}$ at $400 \mathrm{~K}$ ?
229276
In the preparation of $\mathrm{CaCO}$ from $\mathrm{CaCO}_{3}$ using the equilibrium
$\mathrm{CaCO}_{3}(\mathrm{~s})$
$\rightleftharpoons \mathrm{CaCO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~s}) \mathrm{K}_{\mathrm{p}}$ is expressed as:
$\log \mathrm{K}_{\mathrm{p}}=7.282-\frac{8500}{\mathrm{~T}}$
The complete decomposition of $\mathrm{CaCO}_{3}$, the temperature in Celsius to be used is
229278
If the equilibrium constant for the reaction, $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$ is $\mathrm{K}$, what is the equilibrium constant of
$\mathrm{HI}(\mathrm{g}) \rightleftharpoons \frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{I}_{2}(\mathrm{~g}) ?$