229241
$K_{c}$ for the reaction $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \quad 2 \mathrm{NO}(\mathrm{g})$
at $300 \mathrm{~K}$ is $4 \times 10^{-6}$. $\mathrm{K}_{\mathrm{p}}$ for the above reaction
$\text { will be }\left(R=2 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)$
229242
A sample of $\mathrm{HI}(\mathrm{g})$ is placed in a flask at a pressure of $0.2 \mathrm{~atm}$. At equilibrium, partial pressure of $\mathrm{HI}(\mathrm{g})$ is $0.04 \mathrm{~atm}$. What is $K_{p}$ for the given equilibrium?
2HI $(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$
229241
$K_{c}$ for the reaction $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \quad 2 \mathrm{NO}(\mathrm{g})$
at $300 \mathrm{~K}$ is $4 \times 10^{-6}$. $\mathrm{K}_{\mathrm{p}}$ for the above reaction
$\text { will be }\left(R=2 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)$
229242
A sample of $\mathrm{HI}(\mathrm{g})$ is placed in a flask at a pressure of $0.2 \mathrm{~atm}$. At equilibrium, partial pressure of $\mathrm{HI}(\mathrm{g})$ is $0.04 \mathrm{~atm}$. What is $K_{p}$ for the given equilibrium?
2HI $(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$
229241
$K_{c}$ for the reaction $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \quad 2 \mathrm{NO}(\mathrm{g})$
at $300 \mathrm{~K}$ is $4 \times 10^{-6}$. $\mathrm{K}_{\mathrm{p}}$ for the above reaction
$\text { will be }\left(R=2 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)$
229242
A sample of $\mathrm{HI}(\mathrm{g})$ is placed in a flask at a pressure of $0.2 \mathrm{~atm}$. At equilibrium, partial pressure of $\mathrm{HI}(\mathrm{g})$ is $0.04 \mathrm{~atm}$. What is $K_{p}$ for the given equilibrium?
2HI $(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$
229241
$K_{c}$ for the reaction $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \quad 2 \mathrm{NO}(\mathrm{g})$
at $300 \mathrm{~K}$ is $4 \times 10^{-6}$. $\mathrm{K}_{\mathrm{p}}$ for the above reaction
$\text { will be }\left(R=2 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)$
229242
A sample of $\mathrm{HI}(\mathrm{g})$ is placed in a flask at a pressure of $0.2 \mathrm{~atm}$. At equilibrium, partial pressure of $\mathrm{HI}(\mathrm{g})$ is $0.04 \mathrm{~atm}$. What is $K_{p}$ for the given equilibrium?
2HI $(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$