06. Application of Kp and Kc
Chemical Equilibrium

229246 $A+2 B \rightleftharpoons 2 C ; K_{c}=$ ?
2 moles of each $A$ and $B$ are present in 10 lit solution. The product $C$ formed 1 mole. Calculate $\mathbf{K}_{\mathbf{c}}$

1 1.5
2 6.67
3 0.15
4 2.3
Chemical Equilibrium

229247 For $\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$, the observed pressure for the reaction mixture in equilibrium is $1.12 \mathrm{~atm}$ at $106{ }^{\circ} \mathrm{C}$. What is the value of $K_{p}$ for the reaction?

1 $0.56 \mathrm{~atm}^{2}$
2 $0.3136 \mathrm{~atm}^{2}$
3 $1.25 \mathrm{~atm}^{2}$
4 $1.12 \mathrm{~atm}^{2}$
Chemical Equilibrium

229248 The equilibrium constant $K_{c}$ value for a gaseous homogeneous equilibrium at $227^{\circ} \mathrm{C}$ is $2.05 \times 10^{-5} \mathrm{~mol} L^{-1}$. The $K_{p}$ value in atmosphere for this equilibrium at this same temperature is $\left(\mathrm{R}=8.2 \times 10^{-2} \mathrm{~L} \mathrm{~atm} \mathrm{~K} \mathrm{~mol}^{-1}\right)$

1 $5.0 \times 10^{-6}$
2 $8.405 \times 10^{-4}$
3 $5.0 \times 10^{-5}$
4 $8.405 \times 10^{-3}$
Chemical Equilibrium

229249 At $400 \mathrm{~K}$, in a $1.0 \mathrm{~L}$ vessel, $\mathrm{N}_{2} \mathrm{O}_{4}$ is allowed to attain equilibrium, $\quad \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons \quad 2 \mathrm{NO}_{2}(\mathrm{~g})$. At equilibrium, the total pressure is $600 \mathrm{~mm} \mathrm{Hg}$, when $20 \%$ of $\mathrm{N}_{2} \mathrm{O}_{4}$ is dissociated. The value of $K_{p}$ for the reaction is

1 50
2 100
3 150
4 200
Chemical Equilibrium

229250 The equilibrium pressure for the reaction $\mathrm{MSO}_{4} 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$ atm at $400 \mathrm{~K}$. The $K_{p}$ for the given reaction (in $\left.\mathbf{a t m}^{2}\right)$ is

1 $\pi^{2} / 4$
2 $\pi / 6$
3 $\pi^{2} / 16$
4 $\pi / 16$
Chemical Equilibrium

229246 $A+2 B \rightleftharpoons 2 C ; K_{c}=$ ?
2 moles of each $A$ and $B$ are present in 10 lit solution. The product $C$ formed 1 mole. Calculate $\mathbf{K}_{\mathbf{c}}$

1 1.5
2 6.67
3 0.15
4 2.3
Chemical Equilibrium

229247 For $\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$, the observed pressure for the reaction mixture in equilibrium is $1.12 \mathrm{~atm}$ at $106{ }^{\circ} \mathrm{C}$. What is the value of $K_{p}$ for the reaction?

1 $0.56 \mathrm{~atm}^{2}$
2 $0.3136 \mathrm{~atm}^{2}$
3 $1.25 \mathrm{~atm}^{2}$
4 $1.12 \mathrm{~atm}^{2}$
Chemical Equilibrium

229248 The equilibrium constant $K_{c}$ value for a gaseous homogeneous equilibrium at $227^{\circ} \mathrm{C}$ is $2.05 \times 10^{-5} \mathrm{~mol} L^{-1}$. The $K_{p}$ value in atmosphere for this equilibrium at this same temperature is $\left(\mathrm{R}=8.2 \times 10^{-2} \mathrm{~L} \mathrm{~atm} \mathrm{~K} \mathrm{~mol}^{-1}\right)$

1 $5.0 \times 10^{-6}$
2 $8.405 \times 10^{-4}$
3 $5.0 \times 10^{-5}$
4 $8.405 \times 10^{-3}$
Chemical Equilibrium

229249 At $400 \mathrm{~K}$, in a $1.0 \mathrm{~L}$ vessel, $\mathrm{N}_{2} \mathrm{O}_{4}$ is allowed to attain equilibrium, $\quad \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons \quad 2 \mathrm{NO}_{2}(\mathrm{~g})$. At equilibrium, the total pressure is $600 \mathrm{~mm} \mathrm{Hg}$, when $20 \%$ of $\mathrm{N}_{2} \mathrm{O}_{4}$ is dissociated. The value of $K_{p}$ for the reaction is

1 50
2 100
3 150
4 200
Chemical Equilibrium

229250 The equilibrium pressure for the reaction $\mathrm{MSO}_{4} 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$ atm at $400 \mathrm{~K}$. The $K_{p}$ for the given reaction (in $\left.\mathbf{a t m}^{2}\right)$ is

1 $\pi^{2} / 4$
2 $\pi / 6$
3 $\pi^{2} / 16$
4 $\pi / 16$
Chemical Equilibrium

229246 $A+2 B \rightleftharpoons 2 C ; K_{c}=$ ?
2 moles of each $A$ and $B$ are present in 10 lit solution. The product $C$ formed 1 mole. Calculate $\mathbf{K}_{\mathbf{c}}$

1 1.5
2 6.67
3 0.15
4 2.3
Chemical Equilibrium

229247 For $\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$, the observed pressure for the reaction mixture in equilibrium is $1.12 \mathrm{~atm}$ at $106{ }^{\circ} \mathrm{C}$. What is the value of $K_{p}$ for the reaction?

1 $0.56 \mathrm{~atm}^{2}$
2 $0.3136 \mathrm{~atm}^{2}$
3 $1.25 \mathrm{~atm}^{2}$
4 $1.12 \mathrm{~atm}^{2}$
Chemical Equilibrium

229248 The equilibrium constant $K_{c}$ value for a gaseous homogeneous equilibrium at $227^{\circ} \mathrm{C}$ is $2.05 \times 10^{-5} \mathrm{~mol} L^{-1}$. The $K_{p}$ value in atmosphere for this equilibrium at this same temperature is $\left(\mathrm{R}=8.2 \times 10^{-2} \mathrm{~L} \mathrm{~atm} \mathrm{~K} \mathrm{~mol}^{-1}\right)$

1 $5.0 \times 10^{-6}$
2 $8.405 \times 10^{-4}$
3 $5.0 \times 10^{-5}$
4 $8.405 \times 10^{-3}$
Chemical Equilibrium

229249 At $400 \mathrm{~K}$, in a $1.0 \mathrm{~L}$ vessel, $\mathrm{N}_{2} \mathrm{O}_{4}$ is allowed to attain equilibrium, $\quad \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons \quad 2 \mathrm{NO}_{2}(\mathrm{~g})$. At equilibrium, the total pressure is $600 \mathrm{~mm} \mathrm{Hg}$, when $20 \%$ of $\mathrm{N}_{2} \mathrm{O}_{4}$ is dissociated. The value of $K_{p}$ for the reaction is

1 50
2 100
3 150
4 200
Chemical Equilibrium

229250 The equilibrium pressure for the reaction $\mathrm{MSO}_{4} 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$ atm at $400 \mathrm{~K}$. The $K_{p}$ for the given reaction (in $\left.\mathbf{a t m}^{2}\right)$ is

1 $\pi^{2} / 4$
2 $\pi / 6$
3 $\pi^{2} / 16$
4 $\pi / 16$
Chemical Equilibrium

229246 $A+2 B \rightleftharpoons 2 C ; K_{c}=$ ?
2 moles of each $A$ and $B$ are present in 10 lit solution. The product $C$ formed 1 mole. Calculate $\mathbf{K}_{\mathbf{c}}$

1 1.5
2 6.67
3 0.15
4 2.3
Chemical Equilibrium

229247 For $\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$, the observed pressure for the reaction mixture in equilibrium is $1.12 \mathrm{~atm}$ at $106{ }^{\circ} \mathrm{C}$. What is the value of $K_{p}$ for the reaction?

1 $0.56 \mathrm{~atm}^{2}$
2 $0.3136 \mathrm{~atm}^{2}$
3 $1.25 \mathrm{~atm}^{2}$
4 $1.12 \mathrm{~atm}^{2}$
Chemical Equilibrium

229248 The equilibrium constant $K_{c}$ value for a gaseous homogeneous equilibrium at $227^{\circ} \mathrm{C}$ is $2.05 \times 10^{-5} \mathrm{~mol} L^{-1}$. The $K_{p}$ value in atmosphere for this equilibrium at this same temperature is $\left(\mathrm{R}=8.2 \times 10^{-2} \mathrm{~L} \mathrm{~atm} \mathrm{~K} \mathrm{~mol}^{-1}\right)$

1 $5.0 \times 10^{-6}$
2 $8.405 \times 10^{-4}$
3 $5.0 \times 10^{-5}$
4 $8.405 \times 10^{-3}$
Chemical Equilibrium

229249 At $400 \mathrm{~K}$, in a $1.0 \mathrm{~L}$ vessel, $\mathrm{N}_{2} \mathrm{O}_{4}$ is allowed to attain equilibrium, $\quad \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons \quad 2 \mathrm{NO}_{2}(\mathrm{~g})$. At equilibrium, the total pressure is $600 \mathrm{~mm} \mathrm{Hg}$, when $20 \%$ of $\mathrm{N}_{2} \mathrm{O}_{4}$ is dissociated. The value of $K_{p}$ for the reaction is

1 50
2 100
3 150
4 200
Chemical Equilibrium

229250 The equilibrium pressure for the reaction $\mathrm{MSO}_{4} 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$ atm at $400 \mathrm{~K}$. The $K_{p}$ for the given reaction (in $\left.\mathbf{a t m}^{2}\right)$ is

1 $\pi^{2} / 4$
2 $\pi / 6$
3 $\pi^{2} / 16$
4 $\pi / 16$
Chemical Equilibrium

229246 $A+2 B \rightleftharpoons 2 C ; K_{c}=$ ?
2 moles of each $A$ and $B$ are present in 10 lit solution. The product $C$ formed 1 mole. Calculate $\mathbf{K}_{\mathbf{c}}$

1 1.5
2 6.67
3 0.15
4 2.3
Chemical Equilibrium

229247 For $\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$, the observed pressure for the reaction mixture in equilibrium is $1.12 \mathrm{~atm}$ at $106{ }^{\circ} \mathrm{C}$. What is the value of $K_{p}$ for the reaction?

1 $0.56 \mathrm{~atm}^{2}$
2 $0.3136 \mathrm{~atm}^{2}$
3 $1.25 \mathrm{~atm}^{2}$
4 $1.12 \mathrm{~atm}^{2}$
Chemical Equilibrium

229248 The equilibrium constant $K_{c}$ value for a gaseous homogeneous equilibrium at $227^{\circ} \mathrm{C}$ is $2.05 \times 10^{-5} \mathrm{~mol} L^{-1}$. The $K_{p}$ value in atmosphere for this equilibrium at this same temperature is $\left(\mathrm{R}=8.2 \times 10^{-2} \mathrm{~L} \mathrm{~atm} \mathrm{~K} \mathrm{~mol}^{-1}\right)$

1 $5.0 \times 10^{-6}$
2 $8.405 \times 10^{-4}$
3 $5.0 \times 10^{-5}$
4 $8.405 \times 10^{-3}$
Chemical Equilibrium

229249 At $400 \mathrm{~K}$, in a $1.0 \mathrm{~L}$ vessel, $\mathrm{N}_{2} \mathrm{O}_{4}$ is allowed to attain equilibrium, $\quad \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons \quad 2 \mathrm{NO}_{2}(\mathrm{~g})$. At equilibrium, the total pressure is $600 \mathrm{~mm} \mathrm{Hg}$, when $20 \%$ of $\mathrm{N}_{2} \mathrm{O}_{4}$ is dissociated. The value of $K_{p}$ for the reaction is

1 50
2 100
3 150
4 200
Chemical Equilibrium

229250 The equilibrium pressure for the reaction $\mathrm{MSO}_{4} 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$ atm at $400 \mathrm{~K}$. The $K_{p}$ for the given reaction (in $\left.\mathbf{a t m}^{2}\right)$ is

1 $\pi^{2} / 4$
2 $\pi / 6$
3 $\pi^{2} / 16$
4 $\pi / 16$