229247 For $\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$, the observed pressure for the reaction mixture in equilibrium is $1.12 \mathrm{~atm}$ at $106{ }^{\circ} \mathrm{C}$. What is the value of $K_{p}$ for the reaction?
229248 The equilibrium constant $K_{c}$ value for a gaseous homogeneous equilibrium at $227^{\circ} \mathrm{C}$ is $2.05 \times 10^{-5} \mathrm{~mol} L^{-1}$. The $K_{p}$ value in atmosphere for this equilibrium at this same temperature is $\left(\mathrm{R}=8.2 \times 10^{-2} \mathrm{~L} \mathrm{~atm} \mathrm{~K} \mathrm{~mol}^{-1}\right)$
229249 At $400 \mathrm{~K}$, in a $1.0 \mathrm{~L}$ vessel, $\mathrm{N}_{2} \mathrm{O}_{4}$ is allowed to attain equilibrium, $\quad \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons \quad 2 \mathrm{NO}_{2}(\mathrm{~g})$. At equilibrium, the total pressure is $600 \mathrm{~mm} \mathrm{Hg}$, when $20 \%$ of $\mathrm{N}_{2} \mathrm{O}_{4}$ is dissociated. The value of $K_{p}$ for the reaction is
229247 For $\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$, the observed pressure for the reaction mixture in equilibrium is $1.12 \mathrm{~atm}$ at $106{ }^{\circ} \mathrm{C}$. What is the value of $K_{p}$ for the reaction?
229248 The equilibrium constant $K_{c}$ value for a gaseous homogeneous equilibrium at $227^{\circ} \mathrm{C}$ is $2.05 \times 10^{-5} \mathrm{~mol} L^{-1}$. The $K_{p}$ value in atmosphere for this equilibrium at this same temperature is $\left(\mathrm{R}=8.2 \times 10^{-2} \mathrm{~L} \mathrm{~atm} \mathrm{~K} \mathrm{~mol}^{-1}\right)$
229249 At $400 \mathrm{~K}$, in a $1.0 \mathrm{~L}$ vessel, $\mathrm{N}_{2} \mathrm{O}_{4}$ is allowed to attain equilibrium, $\quad \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons \quad 2 \mathrm{NO}_{2}(\mathrm{~g})$. At equilibrium, the total pressure is $600 \mathrm{~mm} \mathrm{Hg}$, when $20 \%$ of $\mathrm{N}_{2} \mathrm{O}_{4}$ is dissociated. The value of $K_{p}$ for the reaction is
229247 For $\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$, the observed pressure for the reaction mixture in equilibrium is $1.12 \mathrm{~atm}$ at $106{ }^{\circ} \mathrm{C}$. What is the value of $K_{p}$ for the reaction?
229248 The equilibrium constant $K_{c}$ value for a gaseous homogeneous equilibrium at $227^{\circ} \mathrm{C}$ is $2.05 \times 10^{-5} \mathrm{~mol} L^{-1}$. The $K_{p}$ value in atmosphere for this equilibrium at this same temperature is $\left(\mathrm{R}=8.2 \times 10^{-2} \mathrm{~L} \mathrm{~atm} \mathrm{~K} \mathrm{~mol}^{-1}\right)$
229249 At $400 \mathrm{~K}$, in a $1.0 \mathrm{~L}$ vessel, $\mathrm{N}_{2} \mathrm{O}_{4}$ is allowed to attain equilibrium, $\quad \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons \quad 2 \mathrm{NO}_{2}(\mathrm{~g})$. At equilibrium, the total pressure is $600 \mathrm{~mm} \mathrm{Hg}$, when $20 \%$ of $\mathrm{N}_{2} \mathrm{O}_{4}$ is dissociated. The value of $K_{p}$ for the reaction is
229247 For $\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$, the observed pressure for the reaction mixture in equilibrium is $1.12 \mathrm{~atm}$ at $106{ }^{\circ} \mathrm{C}$. What is the value of $K_{p}$ for the reaction?
229248 The equilibrium constant $K_{c}$ value for a gaseous homogeneous equilibrium at $227^{\circ} \mathrm{C}$ is $2.05 \times 10^{-5} \mathrm{~mol} L^{-1}$. The $K_{p}$ value in atmosphere for this equilibrium at this same temperature is $\left(\mathrm{R}=8.2 \times 10^{-2} \mathrm{~L} \mathrm{~atm} \mathrm{~K} \mathrm{~mol}^{-1}\right)$
229249 At $400 \mathrm{~K}$, in a $1.0 \mathrm{~L}$ vessel, $\mathrm{N}_{2} \mathrm{O}_{4}$ is allowed to attain equilibrium, $\quad \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons \quad 2 \mathrm{NO}_{2}(\mathrm{~g})$. At equilibrium, the total pressure is $600 \mathrm{~mm} \mathrm{Hg}$, when $20 \%$ of $\mathrm{N}_{2} \mathrm{O}_{4}$ is dissociated. The value of $K_{p}$ for the reaction is
229247 For $\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$, the observed pressure for the reaction mixture in equilibrium is $1.12 \mathrm{~atm}$ at $106{ }^{\circ} \mathrm{C}$. What is the value of $K_{p}$ for the reaction?
229248 The equilibrium constant $K_{c}$ value for a gaseous homogeneous equilibrium at $227^{\circ} \mathrm{C}$ is $2.05 \times 10^{-5} \mathrm{~mol} L^{-1}$. The $K_{p}$ value in atmosphere for this equilibrium at this same temperature is $\left(\mathrm{R}=8.2 \times 10^{-2} \mathrm{~L} \mathrm{~atm} \mathrm{~K} \mathrm{~mol}^{-1}\right)$
229249 At $400 \mathrm{~K}$, in a $1.0 \mathrm{~L}$ vessel, $\mathrm{N}_{2} \mathrm{O}_{4}$ is allowed to attain equilibrium, $\quad \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons \quad 2 \mathrm{NO}_{2}(\mathrm{~g})$. At equilibrium, the total pressure is $600 \mathrm{~mm} \mathrm{Hg}$, when $20 \%$ of $\mathrm{N}_{2} \mathrm{O}_{4}$ is dissociated. The value of $K_{p}$ for the reaction is