03. Degree of Dissociation
Chemical Equilibrium

229088 At a fixed concentration, the molar conductance of aqueous sodium hydroxide at $298 \mathrm{~K}$ is found to be $10 \mathrm{ohm}^{-1} \mathrm{~cm}^{2}, \mathrm{~mol}^{-1}$. At infinite dilution nd 298 $\mathrm{K}$, its molar conductance is found to be $242 \mathrm{ohm}^{-}$ $1, \mathrm{~cm}^{2}, \mathrm{~mol}^{-1}$. Find the degree of ionization of sodium hydroxide at the same concentration and temperature.

1 $2.06 \%$
2 $4.13 \%$
3 $0.04 \%$
4 $10 \%$
Chemical Equilibrium

229089 At $298 \mathrm{~K}$, the ratio of dissociated water to that of undissociated water is [Assume pure water]

1 $1 \times 10^{-7}$
2 $1.8 \times 10^{-9}$
3 $1 \times 10^{-3}$
4 1,000
Chemical Equilibrium

229090 The successive equilibrium constant for the stepwise dissociation of a tribasic acid are $K_{1}$, $K_{2}$, and $K_{3}$, respectively. The equilibrium constant for the overall dissociation is

1 $\left(\mathrm{K}_{1}+\mathrm{K}_{2}+\mathrm{K}_{3}\right)$
2 $\sqrt[3]{\left(\mathrm{K}_{1}+\mathrm{K}_{2}+\mathrm{K}_{3}\right)}$
3 $\left(\mathrm{K}_{1} \times \mathrm{K}_{2} \times \mathrm{K}_{3}\right)^{3}$
4 $\mathrm{K}_{1} \times \mathrm{K}_{2} \times \mathrm{K}_{3}$
Chemical Equilibrium

229091 Match the following
| List-I (Acid)| List-II ($K_{\mathbf{a}}$) (ionization constant) |
|----|----|
|

1 A- I,B- III,C - IV,D- V
2 A- V,B- II,C - III,D- IV
3 A- II,B- III,C - IV,D- V
4 A- III,B- IV,C - II,D- V
Chemical Equilibrium

229092 If in the reaction, $\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2} ; \alpha$ is the degree of dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$, then total number of moles at equilibrium is :

1 $(1-\alpha)$
2 $(1+\alpha)$
3 $(1-\alpha)^{2}$
4 $(1+\alpha)^{2}$
Chemical Equilibrium

229088 At a fixed concentration, the molar conductance of aqueous sodium hydroxide at $298 \mathrm{~K}$ is found to be $10 \mathrm{ohm}^{-1} \mathrm{~cm}^{2}, \mathrm{~mol}^{-1}$. At infinite dilution nd 298 $\mathrm{K}$, its molar conductance is found to be $242 \mathrm{ohm}^{-}$ $1, \mathrm{~cm}^{2}, \mathrm{~mol}^{-1}$. Find the degree of ionization of sodium hydroxide at the same concentration and temperature.

1 $2.06 \%$
2 $4.13 \%$
3 $0.04 \%$
4 $10 \%$
Chemical Equilibrium

229089 At $298 \mathrm{~K}$, the ratio of dissociated water to that of undissociated water is [Assume pure water]

1 $1 \times 10^{-7}$
2 $1.8 \times 10^{-9}$
3 $1 \times 10^{-3}$
4 1,000
Chemical Equilibrium

229090 The successive equilibrium constant for the stepwise dissociation of a tribasic acid are $K_{1}$, $K_{2}$, and $K_{3}$, respectively. The equilibrium constant for the overall dissociation is

1 $\left(\mathrm{K}_{1}+\mathrm{K}_{2}+\mathrm{K}_{3}\right)$
2 $\sqrt[3]{\left(\mathrm{K}_{1}+\mathrm{K}_{2}+\mathrm{K}_{3}\right)}$
3 $\left(\mathrm{K}_{1} \times \mathrm{K}_{2} \times \mathrm{K}_{3}\right)^{3}$
4 $\mathrm{K}_{1} \times \mathrm{K}_{2} \times \mathrm{K}_{3}$
Chemical Equilibrium

229091 Match the following
| List-I (Acid)| List-II ($K_{\mathbf{a}}$) (ionization constant) |
|----|----|
|

1 A- I,B- III,C - IV,D- V
2 A- V,B- II,C - III,D- IV
3 A- II,B- III,C - IV,D- V
4 A- III,B- IV,C - II,D- V
Chemical Equilibrium

229092 If in the reaction, $\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2} ; \alpha$ is the degree of dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$, then total number of moles at equilibrium is :

1 $(1-\alpha)$
2 $(1+\alpha)$
3 $(1-\alpha)^{2}$
4 $(1+\alpha)^{2}$
Chemical Equilibrium

229088 At a fixed concentration, the molar conductance of aqueous sodium hydroxide at $298 \mathrm{~K}$ is found to be $10 \mathrm{ohm}^{-1} \mathrm{~cm}^{2}, \mathrm{~mol}^{-1}$. At infinite dilution nd 298 $\mathrm{K}$, its molar conductance is found to be $242 \mathrm{ohm}^{-}$ $1, \mathrm{~cm}^{2}, \mathrm{~mol}^{-1}$. Find the degree of ionization of sodium hydroxide at the same concentration and temperature.

1 $2.06 \%$
2 $4.13 \%$
3 $0.04 \%$
4 $10 \%$
Chemical Equilibrium

229089 At $298 \mathrm{~K}$, the ratio of dissociated water to that of undissociated water is [Assume pure water]

1 $1 \times 10^{-7}$
2 $1.8 \times 10^{-9}$
3 $1 \times 10^{-3}$
4 1,000
Chemical Equilibrium

229090 The successive equilibrium constant for the stepwise dissociation of a tribasic acid are $K_{1}$, $K_{2}$, and $K_{3}$, respectively. The equilibrium constant for the overall dissociation is

1 $\left(\mathrm{K}_{1}+\mathrm{K}_{2}+\mathrm{K}_{3}\right)$
2 $\sqrt[3]{\left(\mathrm{K}_{1}+\mathrm{K}_{2}+\mathrm{K}_{3}\right)}$
3 $\left(\mathrm{K}_{1} \times \mathrm{K}_{2} \times \mathrm{K}_{3}\right)^{3}$
4 $\mathrm{K}_{1} \times \mathrm{K}_{2} \times \mathrm{K}_{3}$
Chemical Equilibrium

229091 Match the following
| List-I (Acid)| List-II ($K_{\mathbf{a}}$) (ionization constant) |
|----|----|
|

1 A- I,B- III,C - IV,D- V
2 A- V,B- II,C - III,D- IV
3 A- II,B- III,C - IV,D- V
4 A- III,B- IV,C - II,D- V
Chemical Equilibrium

229092 If in the reaction, $\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2} ; \alpha$ is the degree of dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$, then total number of moles at equilibrium is :

1 $(1-\alpha)$
2 $(1+\alpha)$
3 $(1-\alpha)^{2}$
4 $(1+\alpha)^{2}$
Chemical Equilibrium

229088 At a fixed concentration, the molar conductance of aqueous sodium hydroxide at $298 \mathrm{~K}$ is found to be $10 \mathrm{ohm}^{-1} \mathrm{~cm}^{2}, \mathrm{~mol}^{-1}$. At infinite dilution nd 298 $\mathrm{K}$, its molar conductance is found to be $242 \mathrm{ohm}^{-}$ $1, \mathrm{~cm}^{2}, \mathrm{~mol}^{-1}$. Find the degree of ionization of sodium hydroxide at the same concentration and temperature.

1 $2.06 \%$
2 $4.13 \%$
3 $0.04 \%$
4 $10 \%$
Chemical Equilibrium

229089 At $298 \mathrm{~K}$, the ratio of dissociated water to that of undissociated water is [Assume pure water]

1 $1 \times 10^{-7}$
2 $1.8 \times 10^{-9}$
3 $1 \times 10^{-3}$
4 1,000
Chemical Equilibrium

229090 The successive equilibrium constant for the stepwise dissociation of a tribasic acid are $K_{1}$, $K_{2}$, and $K_{3}$, respectively. The equilibrium constant for the overall dissociation is

1 $\left(\mathrm{K}_{1}+\mathrm{K}_{2}+\mathrm{K}_{3}\right)$
2 $\sqrt[3]{\left(\mathrm{K}_{1}+\mathrm{K}_{2}+\mathrm{K}_{3}\right)}$
3 $\left(\mathrm{K}_{1} \times \mathrm{K}_{2} \times \mathrm{K}_{3}\right)^{3}$
4 $\mathrm{K}_{1} \times \mathrm{K}_{2} \times \mathrm{K}_{3}$
Chemical Equilibrium

229091 Match the following
| List-I (Acid)| List-II ($K_{\mathbf{a}}$) (ionization constant) |
|----|----|
|

1 A- I,B- III,C - IV,D- V
2 A- V,B- II,C - III,D- IV
3 A- II,B- III,C - IV,D- V
4 A- III,B- IV,C - II,D- V
Chemical Equilibrium

229092 If in the reaction, $\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2} ; \alpha$ is the degree of dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$, then total number of moles at equilibrium is :

1 $(1-\alpha)$
2 $(1+\alpha)$
3 $(1-\alpha)^{2}$
4 $(1+\alpha)^{2}$
Chemical Equilibrium

229088 At a fixed concentration, the molar conductance of aqueous sodium hydroxide at $298 \mathrm{~K}$ is found to be $10 \mathrm{ohm}^{-1} \mathrm{~cm}^{2}, \mathrm{~mol}^{-1}$. At infinite dilution nd 298 $\mathrm{K}$, its molar conductance is found to be $242 \mathrm{ohm}^{-}$ $1, \mathrm{~cm}^{2}, \mathrm{~mol}^{-1}$. Find the degree of ionization of sodium hydroxide at the same concentration and temperature.

1 $2.06 \%$
2 $4.13 \%$
3 $0.04 \%$
4 $10 \%$
Chemical Equilibrium

229089 At $298 \mathrm{~K}$, the ratio of dissociated water to that of undissociated water is [Assume pure water]

1 $1 \times 10^{-7}$
2 $1.8 \times 10^{-9}$
3 $1 \times 10^{-3}$
4 1,000
Chemical Equilibrium

229090 The successive equilibrium constant for the stepwise dissociation of a tribasic acid are $K_{1}$, $K_{2}$, and $K_{3}$, respectively. The equilibrium constant for the overall dissociation is

1 $\left(\mathrm{K}_{1}+\mathrm{K}_{2}+\mathrm{K}_{3}\right)$
2 $\sqrt[3]{\left(\mathrm{K}_{1}+\mathrm{K}_{2}+\mathrm{K}_{3}\right)}$
3 $\left(\mathrm{K}_{1} \times \mathrm{K}_{2} \times \mathrm{K}_{3}\right)^{3}$
4 $\mathrm{K}_{1} \times \mathrm{K}_{2} \times \mathrm{K}_{3}$
Chemical Equilibrium

229091 Match the following
| List-I (Acid)| List-II ($K_{\mathbf{a}}$) (ionization constant) |
|----|----|
|

1 A- I,B- III,C - IV,D- V
2 A- V,B- II,C - III,D- IV
3 A- II,B- III,C - IV,D- V
4 A- III,B- IV,C - II,D- V
Chemical Equilibrium

229092 If in the reaction, $\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2} ; \alpha$ is the degree of dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$, then total number of moles at equilibrium is :

1 $(1-\alpha)$
2 $(1+\alpha)$
3 $(1-\alpha)^{2}$
4 $(1+\alpha)^{2}$