03. Degree of Dissociation
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Chemical Equilibrium

229085 For a concentrated solution of a weak electrolyte $A_{x} B_{y}$, the degree of dissociation is given as

1 $\alpha=\sqrt{\mathrm{K}_{\mathrm{eq}} / \mathrm{C}(\mathrm{x}+\mathrm{y})}$
2 $\alpha=\sqrt{\mathrm{K}_{\mathrm{eq}} \mathrm{C} /(\mathrm{xy})}$
3 $\alpha=\left(\mathrm{K}_{\mathrm{eq}} / \mathrm{C}^{\mathrm{x}+\mathrm{y}-1} \mathrm{x}^{\mathrm{x}} \mathrm{y}^{\mathrm{y}}\right)^{1 /(\mathrm{x}+\mathrm{y})}$
4 $\alpha=\sqrt{\mathrm{K}_{\mathrm{eq}} / \mathrm{xyC}}$
Chemical Equilibrium

229086 The dissociation equilibrium of gas $A_{2}$ can be represented as
$2 \mathrm{AB}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{AB}(\mathrm{g})+\mathbf{B}_{2}(\mathrm{~g})$
The degree of dissociation ' $x$ ' and is small compared to 1.The expression relating the degree of dissociation(x) with equilibrium constant $K_{p}$ and total pressure $p$ is

1 $\left(2 \mathrm{~K}_{\mathrm{p}} / \mathrm{p}\right)$
2 $\left(2 \mathrm{~K}_{\mathrm{p}} / \mathrm{p}\right)^{1 / 3}$
3 $(2 \mathrm{Kp} / \mathrm{p})^{1 / 2}$
4 $\left(\mathrm{K}_{\mathrm{p}} / \mathrm{p}\right)$
Chemical Equilibrium

229087 The degree of dissociation for a $0.1 \mathrm{M} \mathrm{Al}\left(\mathrm{SO}_{4}\right)_{3}$ solution having Van't Hoff factor value of $\mathbf{4 . 2}$ will be

1 $80 \%$
2 $90 \%$
3 $75 \%$
4 $85 \%$
Chemical Equilibrium

229117 An acid $\mathrm{HA}$ ionises as $\mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-}$
The pH of $1.0 \mathrm{M}$ solution is 5 . Its dissociation constant would be

1 $1 \times 10^{-10}$
2 5
3 $5 \times 10^{-8}$
4 $1 \times 10^{-5}$
Chemical Equilibrium

229085 For a concentrated solution of a weak electrolyte $A_{x} B_{y}$, the degree of dissociation is given as

1 $\alpha=\sqrt{\mathrm{K}_{\mathrm{eq}} / \mathrm{C}(\mathrm{x}+\mathrm{y})}$
2 $\alpha=\sqrt{\mathrm{K}_{\mathrm{eq}} \mathrm{C} /(\mathrm{xy})}$
3 $\alpha=\left(\mathrm{K}_{\mathrm{eq}} / \mathrm{C}^{\mathrm{x}+\mathrm{y}-1} \mathrm{x}^{\mathrm{x}} \mathrm{y}^{\mathrm{y}}\right)^{1 /(\mathrm{x}+\mathrm{y})}$
4 $\alpha=\sqrt{\mathrm{K}_{\mathrm{eq}} / \mathrm{xyC}}$
Chemical Equilibrium

229086 The dissociation equilibrium of gas $A_{2}$ can be represented as
$2 \mathrm{AB}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{AB}(\mathrm{g})+\mathbf{B}_{2}(\mathrm{~g})$
The degree of dissociation ' $x$ ' and is small compared to 1.The expression relating the degree of dissociation(x) with equilibrium constant $K_{p}$ and total pressure $p$ is

1 $\left(2 \mathrm{~K}_{\mathrm{p}} / \mathrm{p}\right)$
2 $\left(2 \mathrm{~K}_{\mathrm{p}} / \mathrm{p}\right)^{1 / 3}$
3 $(2 \mathrm{Kp} / \mathrm{p})^{1 / 2}$
4 $\left(\mathrm{K}_{\mathrm{p}} / \mathrm{p}\right)$
Chemical Equilibrium

229087 The degree of dissociation for a $0.1 \mathrm{M} \mathrm{Al}\left(\mathrm{SO}_{4}\right)_{3}$ solution having Van't Hoff factor value of $\mathbf{4 . 2}$ will be

1 $80 \%$
2 $90 \%$
3 $75 \%$
4 $85 \%$
Chemical Equilibrium

229117 An acid $\mathrm{HA}$ ionises as $\mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-}$
The pH of $1.0 \mathrm{M}$ solution is 5 . Its dissociation constant would be

1 $1 \times 10^{-10}$
2 5
3 $5 \times 10^{-8}$
4 $1 \times 10^{-5}$
Chemical Equilibrium

229085 For a concentrated solution of a weak electrolyte $A_{x} B_{y}$, the degree of dissociation is given as

1 $\alpha=\sqrt{\mathrm{K}_{\mathrm{eq}} / \mathrm{C}(\mathrm{x}+\mathrm{y})}$
2 $\alpha=\sqrt{\mathrm{K}_{\mathrm{eq}} \mathrm{C} /(\mathrm{xy})}$
3 $\alpha=\left(\mathrm{K}_{\mathrm{eq}} / \mathrm{C}^{\mathrm{x}+\mathrm{y}-1} \mathrm{x}^{\mathrm{x}} \mathrm{y}^{\mathrm{y}}\right)^{1 /(\mathrm{x}+\mathrm{y})}$
4 $\alpha=\sqrt{\mathrm{K}_{\mathrm{eq}} / \mathrm{xyC}}$
Chemical Equilibrium

229086 The dissociation equilibrium of gas $A_{2}$ can be represented as
$2 \mathrm{AB}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{AB}(\mathrm{g})+\mathbf{B}_{2}(\mathrm{~g})$
The degree of dissociation ' $x$ ' and is small compared to 1.The expression relating the degree of dissociation(x) with equilibrium constant $K_{p}$ and total pressure $p$ is

1 $\left(2 \mathrm{~K}_{\mathrm{p}} / \mathrm{p}\right)$
2 $\left(2 \mathrm{~K}_{\mathrm{p}} / \mathrm{p}\right)^{1 / 3}$
3 $(2 \mathrm{Kp} / \mathrm{p})^{1 / 2}$
4 $\left(\mathrm{K}_{\mathrm{p}} / \mathrm{p}\right)$
Chemical Equilibrium

229087 The degree of dissociation for a $0.1 \mathrm{M} \mathrm{Al}\left(\mathrm{SO}_{4}\right)_{3}$ solution having Van't Hoff factor value of $\mathbf{4 . 2}$ will be

1 $80 \%$
2 $90 \%$
3 $75 \%$
4 $85 \%$
Chemical Equilibrium

229117 An acid $\mathrm{HA}$ ionises as $\mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-}$
The pH of $1.0 \mathrm{M}$ solution is 5 . Its dissociation constant would be

1 $1 \times 10^{-10}$
2 5
3 $5 \times 10^{-8}$
4 $1 \times 10^{-5}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Chemical Equilibrium

229085 For a concentrated solution of a weak electrolyte $A_{x} B_{y}$, the degree of dissociation is given as

1 $\alpha=\sqrt{\mathrm{K}_{\mathrm{eq}} / \mathrm{C}(\mathrm{x}+\mathrm{y})}$
2 $\alpha=\sqrt{\mathrm{K}_{\mathrm{eq}} \mathrm{C} /(\mathrm{xy})}$
3 $\alpha=\left(\mathrm{K}_{\mathrm{eq}} / \mathrm{C}^{\mathrm{x}+\mathrm{y}-1} \mathrm{x}^{\mathrm{x}} \mathrm{y}^{\mathrm{y}}\right)^{1 /(\mathrm{x}+\mathrm{y})}$
4 $\alpha=\sqrt{\mathrm{K}_{\mathrm{eq}} / \mathrm{xyC}}$
Chemical Equilibrium

229086 The dissociation equilibrium of gas $A_{2}$ can be represented as
$2 \mathrm{AB}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{AB}(\mathrm{g})+\mathbf{B}_{2}(\mathrm{~g})$
The degree of dissociation ' $x$ ' and is small compared to 1.The expression relating the degree of dissociation(x) with equilibrium constant $K_{p}$ and total pressure $p$ is

1 $\left(2 \mathrm{~K}_{\mathrm{p}} / \mathrm{p}\right)$
2 $\left(2 \mathrm{~K}_{\mathrm{p}} / \mathrm{p}\right)^{1 / 3}$
3 $(2 \mathrm{Kp} / \mathrm{p})^{1 / 2}$
4 $\left(\mathrm{K}_{\mathrm{p}} / \mathrm{p}\right)$
Chemical Equilibrium

229087 The degree of dissociation for a $0.1 \mathrm{M} \mathrm{Al}\left(\mathrm{SO}_{4}\right)_{3}$ solution having Van't Hoff factor value of $\mathbf{4 . 2}$ will be

1 $80 \%$
2 $90 \%$
3 $75 \%$
4 $85 \%$
Chemical Equilibrium

229117 An acid $\mathrm{HA}$ ionises as $\mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-}$
The pH of $1.0 \mathrm{M}$ solution is 5 . Its dissociation constant would be

1 $1 \times 10^{-10}$
2 5
3 $5 \times 10^{-8}$
4 $1 \times 10^{-5}$