02. Activation Energy, Standard free Energy
Chemical Equilibrium

229063 Assertion: At equilibrium, $\Delta \mathrm{G}=0$.
Reason: At equilibrium, $\Delta \mathrm{G}^{\mathrm{o}}=\mathrm{RT} \log \mathrm{K}_{\mathrm{c}}$.

1 If both Assertion and Reason are correct and Reason is the correct explanation of Assertion.
2 If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion.
3 If Assertion is correct but Reason is incorrect.
4 If both the Assertion and Reason are incorrect.
Chemical Equilibrium

229064 The value of $\log _{10} K$ for the reaction $A \rightleftharpoons B$ is
(Given : $\Delta_{\mathrm{f}} \mathrm{H}^{0}(298 \mathrm{~K})=-54.07 \mathrm{kJmol}^{-1}$
$\begin{aligned}
& \Delta_{\mathrm{r}} \mathrm{S}^{0}=10 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \\
& \left.\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)
\end{aligned}$

1 5
2 10
3 95
4 100
Chemical Equilibrium

229065 The dissociation energy of $\mathrm{CH}_{4}$ and $\mathrm{C}_{6} \mathrm{H}_{6}$ to convert them into gaseous atom are 360 and $620 \mathrm{kcal} / \mathrm{mol}$ respectively. The bond energy of $\mathrm{C}-\mathrm{C}$ bond is

1 $260 \mathrm{kcal} \mathrm{mol}^{-1}$
2 $180 \mathrm{kcal} \mathrm{mol}^{-1}$
3 $130 \mathrm{kcal} \mathrm{mol}^{-1}$
4 $80 \mathrm{kcal} \mathrm{mol}^{-1}$
Chemical Equilibrium

229067 $\Delta_{r} G^{\circ}$ for the conversion of $O_{2}$ to ozone, $\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{O}_{3}(\mathrm{~g})$ at $298 \mathrm{~K}$ is
( $K_{\mathrm{p}}$ for this conversion is $1 \times 10^{-29}$ )

1 $16.54 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2 $165.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3 $1654 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4 $1.654 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Chemical Equilibrium

229069 If the activation energy for the forward reaction is $150 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and that of the reverse reaction is $260 \mathrm{~kJ} \mathrm{~mol}^{-1}$. What is the enthalpy change for the reaction?

1 $410 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2 $110 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3 $-110 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4 $-410 \mathrm{~kJ} \mathrm{~mol}^{-1}$
5 $90 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Chemical Equilibrium

229063 Assertion: At equilibrium, $\Delta \mathrm{G}=0$.
Reason: At equilibrium, $\Delta \mathrm{G}^{\mathrm{o}}=\mathrm{RT} \log \mathrm{K}_{\mathrm{c}}$.

1 If both Assertion and Reason are correct and Reason is the correct explanation of Assertion.
2 If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion.
3 If Assertion is correct but Reason is incorrect.
4 If both the Assertion and Reason are incorrect.
Chemical Equilibrium

229064 The value of $\log _{10} K$ for the reaction $A \rightleftharpoons B$ is
(Given : $\Delta_{\mathrm{f}} \mathrm{H}^{0}(298 \mathrm{~K})=-54.07 \mathrm{kJmol}^{-1}$
$\begin{aligned}
& \Delta_{\mathrm{r}} \mathrm{S}^{0}=10 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \\
& \left.\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)
\end{aligned}$

1 5
2 10
3 95
4 100
Chemical Equilibrium

229065 The dissociation energy of $\mathrm{CH}_{4}$ and $\mathrm{C}_{6} \mathrm{H}_{6}$ to convert them into gaseous atom are 360 and $620 \mathrm{kcal} / \mathrm{mol}$ respectively. The bond energy of $\mathrm{C}-\mathrm{C}$ bond is

1 $260 \mathrm{kcal} \mathrm{mol}^{-1}$
2 $180 \mathrm{kcal} \mathrm{mol}^{-1}$
3 $130 \mathrm{kcal} \mathrm{mol}^{-1}$
4 $80 \mathrm{kcal} \mathrm{mol}^{-1}$
Chemical Equilibrium

229067 $\Delta_{r} G^{\circ}$ for the conversion of $O_{2}$ to ozone, $\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{O}_{3}(\mathrm{~g})$ at $298 \mathrm{~K}$ is
( $K_{\mathrm{p}}$ for this conversion is $1 \times 10^{-29}$ )

1 $16.54 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2 $165.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3 $1654 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4 $1.654 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Chemical Equilibrium

229069 If the activation energy for the forward reaction is $150 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and that of the reverse reaction is $260 \mathrm{~kJ} \mathrm{~mol}^{-1}$. What is the enthalpy change for the reaction?

1 $410 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2 $110 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3 $-110 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4 $-410 \mathrm{~kJ} \mathrm{~mol}^{-1}$
5 $90 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Chemical Equilibrium

229063 Assertion: At equilibrium, $\Delta \mathrm{G}=0$.
Reason: At equilibrium, $\Delta \mathrm{G}^{\mathrm{o}}=\mathrm{RT} \log \mathrm{K}_{\mathrm{c}}$.

1 If both Assertion and Reason are correct and Reason is the correct explanation of Assertion.
2 If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion.
3 If Assertion is correct but Reason is incorrect.
4 If both the Assertion and Reason are incorrect.
Chemical Equilibrium

229064 The value of $\log _{10} K$ for the reaction $A \rightleftharpoons B$ is
(Given : $\Delta_{\mathrm{f}} \mathrm{H}^{0}(298 \mathrm{~K})=-54.07 \mathrm{kJmol}^{-1}$
$\begin{aligned}
& \Delta_{\mathrm{r}} \mathrm{S}^{0}=10 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \\
& \left.\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)
\end{aligned}$

1 5
2 10
3 95
4 100
Chemical Equilibrium

229065 The dissociation energy of $\mathrm{CH}_{4}$ and $\mathrm{C}_{6} \mathrm{H}_{6}$ to convert them into gaseous atom are 360 and $620 \mathrm{kcal} / \mathrm{mol}$ respectively. The bond energy of $\mathrm{C}-\mathrm{C}$ bond is

1 $260 \mathrm{kcal} \mathrm{mol}^{-1}$
2 $180 \mathrm{kcal} \mathrm{mol}^{-1}$
3 $130 \mathrm{kcal} \mathrm{mol}^{-1}$
4 $80 \mathrm{kcal} \mathrm{mol}^{-1}$
Chemical Equilibrium

229067 $\Delta_{r} G^{\circ}$ for the conversion of $O_{2}$ to ozone, $\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{O}_{3}(\mathrm{~g})$ at $298 \mathrm{~K}$ is
( $K_{\mathrm{p}}$ for this conversion is $1 \times 10^{-29}$ )

1 $16.54 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2 $165.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3 $1654 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4 $1.654 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Chemical Equilibrium

229069 If the activation energy for the forward reaction is $150 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and that of the reverse reaction is $260 \mathrm{~kJ} \mathrm{~mol}^{-1}$. What is the enthalpy change for the reaction?

1 $410 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2 $110 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3 $-110 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4 $-410 \mathrm{~kJ} \mathrm{~mol}^{-1}$
5 $90 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Chemical Equilibrium

229063 Assertion: At equilibrium, $\Delta \mathrm{G}=0$.
Reason: At equilibrium, $\Delta \mathrm{G}^{\mathrm{o}}=\mathrm{RT} \log \mathrm{K}_{\mathrm{c}}$.

1 If both Assertion and Reason are correct and Reason is the correct explanation of Assertion.
2 If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion.
3 If Assertion is correct but Reason is incorrect.
4 If both the Assertion and Reason are incorrect.
Chemical Equilibrium

229064 The value of $\log _{10} K$ for the reaction $A \rightleftharpoons B$ is
(Given : $\Delta_{\mathrm{f}} \mathrm{H}^{0}(298 \mathrm{~K})=-54.07 \mathrm{kJmol}^{-1}$
$\begin{aligned}
& \Delta_{\mathrm{r}} \mathrm{S}^{0}=10 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \\
& \left.\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)
\end{aligned}$

1 5
2 10
3 95
4 100
Chemical Equilibrium

229065 The dissociation energy of $\mathrm{CH}_{4}$ and $\mathrm{C}_{6} \mathrm{H}_{6}$ to convert them into gaseous atom are 360 and $620 \mathrm{kcal} / \mathrm{mol}$ respectively. The bond energy of $\mathrm{C}-\mathrm{C}$ bond is

1 $260 \mathrm{kcal} \mathrm{mol}^{-1}$
2 $180 \mathrm{kcal} \mathrm{mol}^{-1}$
3 $130 \mathrm{kcal} \mathrm{mol}^{-1}$
4 $80 \mathrm{kcal} \mathrm{mol}^{-1}$
Chemical Equilibrium

229067 $\Delta_{r} G^{\circ}$ for the conversion of $O_{2}$ to ozone, $\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{O}_{3}(\mathrm{~g})$ at $298 \mathrm{~K}$ is
( $K_{\mathrm{p}}$ for this conversion is $1 \times 10^{-29}$ )

1 $16.54 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2 $165.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3 $1654 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4 $1.654 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Chemical Equilibrium

229069 If the activation energy for the forward reaction is $150 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and that of the reverse reaction is $260 \mathrm{~kJ} \mathrm{~mol}^{-1}$. What is the enthalpy change for the reaction?

1 $410 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2 $110 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3 $-110 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4 $-410 \mathrm{~kJ} \mathrm{~mol}^{-1}$
5 $90 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Chemical Equilibrium

229063 Assertion: At equilibrium, $\Delta \mathrm{G}=0$.
Reason: At equilibrium, $\Delta \mathrm{G}^{\mathrm{o}}=\mathrm{RT} \log \mathrm{K}_{\mathrm{c}}$.

1 If both Assertion and Reason are correct and Reason is the correct explanation of Assertion.
2 If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion.
3 If Assertion is correct but Reason is incorrect.
4 If both the Assertion and Reason are incorrect.
Chemical Equilibrium

229064 The value of $\log _{10} K$ for the reaction $A \rightleftharpoons B$ is
(Given : $\Delta_{\mathrm{f}} \mathrm{H}^{0}(298 \mathrm{~K})=-54.07 \mathrm{kJmol}^{-1}$
$\begin{aligned}
& \Delta_{\mathrm{r}} \mathrm{S}^{0}=10 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \\
& \left.\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)
\end{aligned}$

1 5
2 10
3 95
4 100
Chemical Equilibrium

229065 The dissociation energy of $\mathrm{CH}_{4}$ and $\mathrm{C}_{6} \mathrm{H}_{6}$ to convert them into gaseous atom are 360 and $620 \mathrm{kcal} / \mathrm{mol}$ respectively. The bond energy of $\mathrm{C}-\mathrm{C}$ bond is

1 $260 \mathrm{kcal} \mathrm{mol}^{-1}$
2 $180 \mathrm{kcal} \mathrm{mol}^{-1}$
3 $130 \mathrm{kcal} \mathrm{mol}^{-1}$
4 $80 \mathrm{kcal} \mathrm{mol}^{-1}$
Chemical Equilibrium

229067 $\Delta_{r} G^{\circ}$ for the conversion of $O_{2}$ to ozone, $\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{O}_{3}(\mathrm{~g})$ at $298 \mathrm{~K}$ is
( $K_{\mathrm{p}}$ for this conversion is $1 \times 10^{-29}$ )

1 $16.54 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2 $165.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3 $1654 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4 $1.654 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Chemical Equilibrium

229069 If the activation energy for the forward reaction is $150 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and that of the reverse reaction is $260 \mathrm{~kJ} \mathrm{~mol}^{-1}$. What is the enthalpy change for the reaction?

1 $410 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2 $110 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3 $-110 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4 $-410 \mathrm{~kJ} \mathrm{~mol}^{-1}$
5 $90 \mathrm{~kJ} \mathrm{~mol}^{-1}$