02. Activation Energy, Standard free Energy
Chemical Equilibrium

229070 Calculate the standard enthalpy change (in $\mathrm{kJ}$ $\mathrm{mol}^{-1}$ ) for the reaction
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~g})$
Given that bond enthalpies of $\mathrm{H}-\mathrm{H}, \mathrm{O}=\mathrm{O}$, $\mathrm{O}-\mathrm{H}$ and $\mathrm{O}-\mathrm{O}$ (in $\mathrm{kJ} \mathrm{mol}^{-1}$ ) are respectively 438, 498, 464 and 138.

1 -334
2 -130
3 -65
4 +130
5 +334
Chemical Equilibrium

229071 The first $\left(\Delta_{\mathrm{i}} \mathrm{H}_{1}\right)$ and second $\left(\Delta_{\mathrm{i}} \mathrm{H}_{2}\right)$ ionisation enthalpies (in $\left.\mathrm{kJ} \mathrm{mol}^{-1}\right)$ and the $\left(\Delta_{\mathrm{eg}} \mathrm{H}^{0}\right)$ electron gain enthalpy (in $\mathrm{kJ} \mathrm{mol}^{-1}$ ) of the elements I, II, III, IV and are given below
{|l|l|l|l|}
| Element | $_{} _{}$ | $_{} _{}$ | $_{} ^{}$ |
|---|---|---|---|
|I | 520 | 7300 | -60 |
|II | 419 | 3051 | -48 |
|III | 1681 | 3374 | -328 |
|IV | 1008 | 1846 | -295 |
|V | 2372 | 5251 | +48 |
|
The most reactive metal and the least reactive non-metal of these are respectively

1 I and V
2 V and II
3 II and V
4 IV and V
5 V and III
Chemical Equilibrium

229072 $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})+22$ kcal. The activation energy for the forward reaction is 50 kcal. What is the activation energy for the backward reaction?

1 $-72 \mathrm{kcal}$
2 $-28 \mathrm{kcal}$
3 $+28 \mathrm{kcal}$
4 $+72 \mathrm{kcal}$
Chemical Equilibrium

229062 Hydrolysis of sucrose is given by the following reaction. $Sucrose +\mathbf{H}_{2} \mathbf{O} \rightleftharpoons Glucose + Fructose. If the equilibrium \left(K_{c}\right)$ is $2 \times 10^{13}$ at $300 \mathrm{~K}$, the value of $\Delta \mathrm{G}^{\mathrm{o}}$ at the same temperature will be

1 $-8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 300 \mathrm{~K} \times \ln \left(2 \times 10^{13}\right)$
2 $8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 300 \mathrm{~K} \times \ln \left(2 \times 10^{13}\right)$
3 $8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 300 \mathrm{~K} \times \ln \left(3 \times 10^{13}\right)$
4 $-8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 300 \mathrm{~K} \times \ln \left(4 \times 10^{13}\right)$
Chemical Equilibrium

229070 Calculate the standard enthalpy change (in $\mathrm{kJ}$ $\mathrm{mol}^{-1}$ ) for the reaction
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~g})$
Given that bond enthalpies of $\mathrm{H}-\mathrm{H}, \mathrm{O}=\mathrm{O}$, $\mathrm{O}-\mathrm{H}$ and $\mathrm{O}-\mathrm{O}$ (in $\mathrm{kJ} \mathrm{mol}^{-1}$ ) are respectively 438, 498, 464 and 138.

1 -334
2 -130
3 -65
4 +130
5 +334
Chemical Equilibrium

229071 The first $\left(\Delta_{\mathrm{i}} \mathrm{H}_{1}\right)$ and second $\left(\Delta_{\mathrm{i}} \mathrm{H}_{2}\right)$ ionisation enthalpies (in $\left.\mathrm{kJ} \mathrm{mol}^{-1}\right)$ and the $\left(\Delta_{\mathrm{eg}} \mathrm{H}^{0}\right)$ electron gain enthalpy (in $\mathrm{kJ} \mathrm{mol}^{-1}$ ) of the elements I, II, III, IV and are given below
{|l|l|l|l|}
| Element | $_{} _{}$ | $_{} _{}$ | $_{} ^{}$ |
|---|---|---|---|
|I | 520 | 7300 | -60 |
|II | 419 | 3051 | -48 |
|III | 1681 | 3374 | -328 |
|IV | 1008 | 1846 | -295 |
|V | 2372 | 5251 | +48 |
|
The most reactive metal and the least reactive non-metal of these are respectively

1 I and V
2 V and II
3 II and V
4 IV and V
5 V and III
Chemical Equilibrium

229072 $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})+22$ kcal. The activation energy for the forward reaction is 50 kcal. What is the activation energy for the backward reaction?

1 $-72 \mathrm{kcal}$
2 $-28 \mathrm{kcal}$
3 $+28 \mathrm{kcal}$
4 $+72 \mathrm{kcal}$
Chemical Equilibrium

229062 Hydrolysis of sucrose is given by the following reaction. $Sucrose +\mathbf{H}_{2} \mathbf{O} \rightleftharpoons Glucose + Fructose. If the equilibrium \left(K_{c}\right)$ is $2 \times 10^{13}$ at $300 \mathrm{~K}$, the value of $\Delta \mathrm{G}^{\mathrm{o}}$ at the same temperature will be

1 $-8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 300 \mathrm{~K} \times \ln \left(2 \times 10^{13}\right)$
2 $8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 300 \mathrm{~K} \times \ln \left(2 \times 10^{13}\right)$
3 $8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 300 \mathrm{~K} \times \ln \left(3 \times 10^{13}\right)$
4 $-8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 300 \mathrm{~K} \times \ln \left(4 \times 10^{13}\right)$
Chemical Equilibrium

229070 Calculate the standard enthalpy change (in $\mathrm{kJ}$ $\mathrm{mol}^{-1}$ ) for the reaction
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~g})$
Given that bond enthalpies of $\mathrm{H}-\mathrm{H}, \mathrm{O}=\mathrm{O}$, $\mathrm{O}-\mathrm{H}$ and $\mathrm{O}-\mathrm{O}$ (in $\mathrm{kJ} \mathrm{mol}^{-1}$ ) are respectively 438, 498, 464 and 138.

1 -334
2 -130
3 -65
4 +130
5 +334
Chemical Equilibrium

229071 The first $\left(\Delta_{\mathrm{i}} \mathrm{H}_{1}\right)$ and second $\left(\Delta_{\mathrm{i}} \mathrm{H}_{2}\right)$ ionisation enthalpies (in $\left.\mathrm{kJ} \mathrm{mol}^{-1}\right)$ and the $\left(\Delta_{\mathrm{eg}} \mathrm{H}^{0}\right)$ electron gain enthalpy (in $\mathrm{kJ} \mathrm{mol}^{-1}$ ) of the elements I, II, III, IV and are given below
{|l|l|l|l|}
| Element | $_{} _{}$ | $_{} _{}$ | $_{} ^{}$ |
|---|---|---|---|
|I | 520 | 7300 | -60 |
|II | 419 | 3051 | -48 |
|III | 1681 | 3374 | -328 |
|IV | 1008 | 1846 | -295 |
|V | 2372 | 5251 | +48 |
|
The most reactive metal and the least reactive non-metal of these are respectively

1 I and V
2 V and II
3 II and V
4 IV and V
5 V and III
Chemical Equilibrium

229072 $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})+22$ kcal. The activation energy for the forward reaction is 50 kcal. What is the activation energy for the backward reaction?

1 $-72 \mathrm{kcal}$
2 $-28 \mathrm{kcal}$
3 $+28 \mathrm{kcal}$
4 $+72 \mathrm{kcal}$
Chemical Equilibrium

229062 Hydrolysis of sucrose is given by the following reaction. $Sucrose +\mathbf{H}_{2} \mathbf{O} \rightleftharpoons Glucose + Fructose. If the equilibrium \left(K_{c}\right)$ is $2 \times 10^{13}$ at $300 \mathrm{~K}$, the value of $\Delta \mathrm{G}^{\mathrm{o}}$ at the same temperature will be

1 $-8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 300 \mathrm{~K} \times \ln \left(2 \times 10^{13}\right)$
2 $8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 300 \mathrm{~K} \times \ln \left(2 \times 10^{13}\right)$
3 $8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 300 \mathrm{~K} \times \ln \left(3 \times 10^{13}\right)$
4 $-8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 300 \mathrm{~K} \times \ln \left(4 \times 10^{13}\right)$
Chemical Equilibrium

229070 Calculate the standard enthalpy change (in $\mathrm{kJ}$ $\mathrm{mol}^{-1}$ ) for the reaction
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~g})$
Given that bond enthalpies of $\mathrm{H}-\mathrm{H}, \mathrm{O}=\mathrm{O}$, $\mathrm{O}-\mathrm{H}$ and $\mathrm{O}-\mathrm{O}$ (in $\mathrm{kJ} \mathrm{mol}^{-1}$ ) are respectively 438, 498, 464 and 138.

1 -334
2 -130
3 -65
4 +130
5 +334
Chemical Equilibrium

229071 The first $\left(\Delta_{\mathrm{i}} \mathrm{H}_{1}\right)$ and second $\left(\Delta_{\mathrm{i}} \mathrm{H}_{2}\right)$ ionisation enthalpies (in $\left.\mathrm{kJ} \mathrm{mol}^{-1}\right)$ and the $\left(\Delta_{\mathrm{eg}} \mathrm{H}^{0}\right)$ electron gain enthalpy (in $\mathrm{kJ} \mathrm{mol}^{-1}$ ) of the elements I, II, III, IV and are given below
{|l|l|l|l|}
| Element | $_{} _{}$ | $_{} _{}$ | $_{} ^{}$ |
|---|---|---|---|
|I | 520 | 7300 | -60 |
|II | 419 | 3051 | -48 |
|III | 1681 | 3374 | -328 |
|IV | 1008 | 1846 | -295 |
|V | 2372 | 5251 | +48 |
|
The most reactive metal and the least reactive non-metal of these are respectively

1 I and V
2 V and II
3 II and V
4 IV and V
5 V and III
Chemical Equilibrium

229072 $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})+22$ kcal. The activation energy for the forward reaction is 50 kcal. What is the activation energy for the backward reaction?

1 $-72 \mathrm{kcal}$
2 $-28 \mathrm{kcal}$
3 $+28 \mathrm{kcal}$
4 $+72 \mathrm{kcal}$
Chemical Equilibrium

229062 Hydrolysis of sucrose is given by the following reaction. $Sucrose +\mathbf{H}_{2} \mathbf{O} \rightleftharpoons Glucose + Fructose. If the equilibrium \left(K_{c}\right)$ is $2 \times 10^{13}$ at $300 \mathrm{~K}$, the value of $\Delta \mathrm{G}^{\mathrm{o}}$ at the same temperature will be

1 $-8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 300 \mathrm{~K} \times \ln \left(2 \times 10^{13}\right)$
2 $8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 300 \mathrm{~K} \times \ln \left(2 \times 10^{13}\right)$
3 $8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 300 \mathrm{~K} \times \ln \left(3 \times 10^{13}\right)$
4 $-8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 300 \mathrm{~K} \times \ln \left(4 \times 10^{13}\right)$