00. Law of Chemical Equilibrium and Equilibrium Constant
Chemical Equilibrium

228970 Consider the following equilibria involving $\mathrm{SO}_{2}$ (g) and their corresponding equilibrium constants:
$\mathrm{SO}_2(\mathrm{~g})+\frac{1}{2} \mathrm{O}_2(\mathrm{~g}) \stackrel{K_1}{\rightleftharpoons} \mathrm{SO}_3(\mathrm{~g})$
$2 \mathrm{SO}_{3}(\mathrm{~g})\underset{K_2}{\rightleftharpoons} 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
Which one of the following is correct?

1 $\mathrm{K}_{2}=\mathrm{K}_{1}^{2}$
2 $\mathrm{K}_{2}^{2}=\mathrm{K}_{1}$
3 $\mathrm{K}_{2}=\mathrm{K}_{1}$
4 $\mathrm{K}_{2} \mathrm{~K}_{1}^{2}=1$
Chemical Equilibrium

228974 The equilibrium constant for the reaction
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons \quad 2 \mathrm{HI}(\mathrm{g})$
at a certain temperature is 49 . What will be the equilibrium constant for the reaction
$\mathrm{HI}(\mathrm{g}) \rightleftharpoons \quad \frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{I}_{2}(\mathrm{~g})$
at the same temperature?

1 7
2 $\frac{1}{7}$
3 24.5
4 98
Chemical Equilibrium

228975 The equilibrium constant for the aromatization reaction of acetylene is 8 . The aromatization reaction is given below
$3 \mathrm{C}_{2} \mathrm{H}_{2} \underset{\text { tube }}{\stackrel{\text { Red hot }}{\longrightarrow}} \mathrm{C}_{6} \mathrm{H}_{6}$
If the equilibrium concentration of acetylene is found to be 0.5 then the equilibrium concentration of benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ is

1 $0.5 \mathrm{~mol} \mathrm{~L}^{-1}$
2 $1 \mathrm{~mol} \mathrm{~L}^{-1}$
3 $0.25 \mathrm{~mol} \mathrm{~L}^{-1}$
4 $2 \mathrm{~mol} \mathrm{~L}^{-1}$
Chemical Equilibrium

228976 $K_{c}$ for the reaction, $\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-} \rightleftharpoons \quad \mathbf{A g}^{+}+2 \mathrm{CN}^{-}$, the equilibrium constant at $25^{\circ} \mathrm{C}$ is $4.0 \times 10^{-19}$, then the silver ion concentration in a solution which was originally 0.1 molar in $\mathrm{KCN}$ and 0.03 molar in $\mathrm{AgNO}_{3}$ is :

1 $7.5 \times 10^{-18}$
2 $7.5 \times 10^{18}$
3 $7.5 \times 10^{-19}$
4 $7.5 \times 10^{19}$
Chemical Equilibrium

228970 Consider the following equilibria involving $\mathrm{SO}_{2}$ (g) and their corresponding equilibrium constants:
$\mathrm{SO}_2(\mathrm{~g})+\frac{1}{2} \mathrm{O}_2(\mathrm{~g}) \stackrel{K_1}{\rightleftharpoons} \mathrm{SO}_3(\mathrm{~g})$
$2 \mathrm{SO}_{3}(\mathrm{~g})\underset{K_2}{\rightleftharpoons} 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
Which one of the following is correct?

1 $\mathrm{K}_{2}=\mathrm{K}_{1}^{2}$
2 $\mathrm{K}_{2}^{2}=\mathrm{K}_{1}$
3 $\mathrm{K}_{2}=\mathrm{K}_{1}$
4 $\mathrm{K}_{2} \mathrm{~K}_{1}^{2}=1$
Chemical Equilibrium

228974 The equilibrium constant for the reaction
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons \quad 2 \mathrm{HI}(\mathrm{g})$
at a certain temperature is 49 . What will be the equilibrium constant for the reaction
$\mathrm{HI}(\mathrm{g}) \rightleftharpoons \quad \frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{I}_{2}(\mathrm{~g})$
at the same temperature?

1 7
2 $\frac{1}{7}$
3 24.5
4 98
Chemical Equilibrium

228975 The equilibrium constant for the aromatization reaction of acetylene is 8 . The aromatization reaction is given below
$3 \mathrm{C}_{2} \mathrm{H}_{2} \underset{\text { tube }}{\stackrel{\text { Red hot }}{\longrightarrow}} \mathrm{C}_{6} \mathrm{H}_{6}$
If the equilibrium concentration of acetylene is found to be 0.5 then the equilibrium concentration of benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ is

1 $0.5 \mathrm{~mol} \mathrm{~L}^{-1}$
2 $1 \mathrm{~mol} \mathrm{~L}^{-1}$
3 $0.25 \mathrm{~mol} \mathrm{~L}^{-1}$
4 $2 \mathrm{~mol} \mathrm{~L}^{-1}$
Chemical Equilibrium

228976 $K_{c}$ for the reaction, $\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-} \rightleftharpoons \quad \mathbf{A g}^{+}+2 \mathrm{CN}^{-}$, the equilibrium constant at $25^{\circ} \mathrm{C}$ is $4.0 \times 10^{-19}$, then the silver ion concentration in a solution which was originally 0.1 molar in $\mathrm{KCN}$ and 0.03 molar in $\mathrm{AgNO}_{3}$ is :

1 $7.5 \times 10^{-18}$
2 $7.5 \times 10^{18}$
3 $7.5 \times 10^{-19}$
4 $7.5 \times 10^{19}$
Chemical Equilibrium

228970 Consider the following equilibria involving $\mathrm{SO}_{2}$ (g) and their corresponding equilibrium constants:
$\mathrm{SO}_2(\mathrm{~g})+\frac{1}{2} \mathrm{O}_2(\mathrm{~g}) \stackrel{K_1}{\rightleftharpoons} \mathrm{SO}_3(\mathrm{~g})$
$2 \mathrm{SO}_{3}(\mathrm{~g})\underset{K_2}{\rightleftharpoons} 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
Which one of the following is correct?

1 $\mathrm{K}_{2}=\mathrm{K}_{1}^{2}$
2 $\mathrm{K}_{2}^{2}=\mathrm{K}_{1}$
3 $\mathrm{K}_{2}=\mathrm{K}_{1}$
4 $\mathrm{K}_{2} \mathrm{~K}_{1}^{2}=1$
Chemical Equilibrium

228974 The equilibrium constant for the reaction
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons \quad 2 \mathrm{HI}(\mathrm{g})$
at a certain temperature is 49 . What will be the equilibrium constant for the reaction
$\mathrm{HI}(\mathrm{g}) \rightleftharpoons \quad \frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{I}_{2}(\mathrm{~g})$
at the same temperature?

1 7
2 $\frac{1}{7}$
3 24.5
4 98
Chemical Equilibrium

228975 The equilibrium constant for the aromatization reaction of acetylene is 8 . The aromatization reaction is given below
$3 \mathrm{C}_{2} \mathrm{H}_{2} \underset{\text { tube }}{\stackrel{\text { Red hot }}{\longrightarrow}} \mathrm{C}_{6} \mathrm{H}_{6}$
If the equilibrium concentration of acetylene is found to be 0.5 then the equilibrium concentration of benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ is

1 $0.5 \mathrm{~mol} \mathrm{~L}^{-1}$
2 $1 \mathrm{~mol} \mathrm{~L}^{-1}$
3 $0.25 \mathrm{~mol} \mathrm{~L}^{-1}$
4 $2 \mathrm{~mol} \mathrm{~L}^{-1}$
Chemical Equilibrium

228976 $K_{c}$ for the reaction, $\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-} \rightleftharpoons \quad \mathbf{A g}^{+}+2 \mathrm{CN}^{-}$, the equilibrium constant at $25^{\circ} \mathrm{C}$ is $4.0 \times 10^{-19}$, then the silver ion concentration in a solution which was originally 0.1 molar in $\mathrm{KCN}$ and 0.03 molar in $\mathrm{AgNO}_{3}$ is :

1 $7.5 \times 10^{-18}$
2 $7.5 \times 10^{18}$
3 $7.5 \times 10^{-19}$
4 $7.5 \times 10^{19}$
Chemical Equilibrium

228970 Consider the following equilibria involving $\mathrm{SO}_{2}$ (g) and their corresponding equilibrium constants:
$\mathrm{SO}_2(\mathrm{~g})+\frac{1}{2} \mathrm{O}_2(\mathrm{~g}) \stackrel{K_1}{\rightleftharpoons} \mathrm{SO}_3(\mathrm{~g})$
$2 \mathrm{SO}_{3}(\mathrm{~g})\underset{K_2}{\rightleftharpoons} 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
Which one of the following is correct?

1 $\mathrm{K}_{2}=\mathrm{K}_{1}^{2}$
2 $\mathrm{K}_{2}^{2}=\mathrm{K}_{1}$
3 $\mathrm{K}_{2}=\mathrm{K}_{1}$
4 $\mathrm{K}_{2} \mathrm{~K}_{1}^{2}=1$
Chemical Equilibrium

228974 The equilibrium constant for the reaction
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons \quad 2 \mathrm{HI}(\mathrm{g})$
at a certain temperature is 49 . What will be the equilibrium constant for the reaction
$\mathrm{HI}(\mathrm{g}) \rightleftharpoons \quad \frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{I}_{2}(\mathrm{~g})$
at the same temperature?

1 7
2 $\frac{1}{7}$
3 24.5
4 98
Chemical Equilibrium

228975 The equilibrium constant for the aromatization reaction of acetylene is 8 . The aromatization reaction is given below
$3 \mathrm{C}_{2} \mathrm{H}_{2} \underset{\text { tube }}{\stackrel{\text { Red hot }}{\longrightarrow}} \mathrm{C}_{6} \mathrm{H}_{6}$
If the equilibrium concentration of acetylene is found to be 0.5 then the equilibrium concentration of benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ is

1 $0.5 \mathrm{~mol} \mathrm{~L}^{-1}$
2 $1 \mathrm{~mol} \mathrm{~L}^{-1}$
3 $0.25 \mathrm{~mol} \mathrm{~L}^{-1}$
4 $2 \mathrm{~mol} \mathrm{~L}^{-1}$
Chemical Equilibrium

228976 $K_{c}$ for the reaction, $\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-} \rightleftharpoons \quad \mathbf{A g}^{+}+2 \mathrm{CN}^{-}$, the equilibrium constant at $25^{\circ} \mathrm{C}$ is $4.0 \times 10^{-19}$, then the silver ion concentration in a solution which was originally 0.1 molar in $\mathrm{KCN}$ and 0.03 molar in $\mathrm{AgNO}_{3}$ is :

1 $7.5 \times 10^{-18}$
2 $7.5 \times 10^{18}$
3 $7.5 \times 10^{-19}$
4 $7.5 \times 10^{19}$