00. Law of Chemical Equilibrium and Equilibrium Constant
Chemical Equilibrium

228980 Equilibrium constant for the reaction, $\mathrm{NH}_{4} \mathrm{OH}+\mathrm{H}^{+} \rightleftharpoons \mathbf{N H}_{4}^{+}+\mathrm{H}_{2} \mathrm{O}$ is $\mathbf{1 . 8} \times 10^{9}$.
Hence, equilibrium constant for
$\mathbf{N H}_{3}(\mathbf{a q})+\mathbf{H}_{2} \mathbf{O} \rightleftharpoons \mathbf{N H}_{4}^{+}+\mathbf{O H}^{-} \mathbf{i s}$ -

1 $1.8 \times 10^{-5}$
2 $1.8 \times 10^{5}$
3 $1.8 \times 10^{-9}$
4 $5.59 \times 10^{-10}$
Chemical Equilibrium

228982 Two equilibria, $\mathbf{A B} \rightleftharpoons \mathbf{A}^{+}+\mathbf{B}^{-}$and $\mathbf{A B}+\mathbf{B}^{-}$
$\rightleftharpoons \mathrm{AB}_{2}^{-}$are simultaneously maintained in a solution with equilibrium constants, $K_{1}$ and $K_{2}$ respectively. The ratio of $\left[\mathrm{A}^{+}\right]$to $\left[\mathrm{AB}_{2}^{-}\right]$in the solution is

1 directly proportional to $\left[\mathrm{B}^{-}\right]$
2 inversely proportional to $\left[\mathrm{B}^{-}\right]$
3 directly proportional to the square of $\left[\mathrm{B}^{-}\right]$
4 inversely proportional to the square of $\left[\mathrm{B}^{-}\right]$
5 independent $\left[\mathrm{B}^{-}\right]$
Chemical Equilibrium

228986 The correct order of equilibrium constants for the reaction is
$\mathrm{H}_{2} \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}\stackrel{\mathrm{K}_1}{\rightleftharpoons} \mathrm{H}_{2} \mathrm{C}(\mathrm{OH})_{2}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}+\mathrm{H}_{2} \mathrm{O} \stackrel{\mathrm{K}_2}{\rightleftharpoons} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH})_{2}$
$\mathrm{CH}_{3} \mathrm{COCH}_{3}+\mathrm{H}_{2} \mathrm{O} \stackrel{\mathrm{K}_3}{\rightleftharpoons} \mathrm{CH}_{3} \mathrm{C}(\mathrm{OH})_{2} \mathrm{CH}_{3}$

1 $\mathrm{K}_{1}>\mathrm{K}_{2}>\mathrm{K}_{3}$
2 $\mathrm{K}_{1}<\mathrm{K}_{2}<\mathrm{K}_{3}$
3 $\mathrm{K}_{1}>\mathrm{K}_{3}>\mathrm{K}_{2}$
4 $\mathrm{K}_{1}<\mathrm{K}_{3}<\mathrm{K}_{2}$
Chemical Equilibrium

228995 Final pressure is higher than initial pressure of a container filled with an ideal gas at constant temperature. What will be the value of equilibrium constant?

1 $\mathrm{K}=1.0$
2 $\mathrm{K}=10.0$
3 $\mathrm{K}>1.0$
4 $\mathrm{K}<1.0$
Chemical Equilibrium

228987 Given that the equilibrium constant for the reaction, $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{2SO}_{3}(\mathrm{~g})$
has a value of 278 at a particular temperature. What is the value of the equilibrium constant for the following reaction at the same temperature?
$\mathrm{SO}_{\mathbf{3}}(\mathrm{g}) \rightleftharpoons \mathrm{SO}_{\mathbf{2}}(\mathrm{g})+\frac{\mathbf{1}}{\mathbf{2}} \mathrm{O}_{\mathbf{2}}(\mathrm{g})$

1 $1.8 \times 10^{-3}$
2 $3.6 \times 10^{-3}$
3 $6.0 \times 10^{-2}$
4 $1.3 \times 10^{-5}$
Chemical Equilibrium

228980 Equilibrium constant for the reaction, $\mathrm{NH}_{4} \mathrm{OH}+\mathrm{H}^{+} \rightleftharpoons \mathbf{N H}_{4}^{+}+\mathrm{H}_{2} \mathrm{O}$ is $\mathbf{1 . 8} \times 10^{9}$.
Hence, equilibrium constant for
$\mathbf{N H}_{3}(\mathbf{a q})+\mathbf{H}_{2} \mathbf{O} \rightleftharpoons \mathbf{N H}_{4}^{+}+\mathbf{O H}^{-} \mathbf{i s}$ -

1 $1.8 \times 10^{-5}$
2 $1.8 \times 10^{5}$
3 $1.8 \times 10^{-9}$
4 $5.59 \times 10^{-10}$
Chemical Equilibrium

228982 Two equilibria, $\mathbf{A B} \rightleftharpoons \mathbf{A}^{+}+\mathbf{B}^{-}$and $\mathbf{A B}+\mathbf{B}^{-}$
$\rightleftharpoons \mathrm{AB}_{2}^{-}$are simultaneously maintained in a solution with equilibrium constants, $K_{1}$ and $K_{2}$ respectively. The ratio of $\left[\mathrm{A}^{+}\right]$to $\left[\mathrm{AB}_{2}^{-}\right]$in the solution is

1 directly proportional to $\left[\mathrm{B}^{-}\right]$
2 inversely proportional to $\left[\mathrm{B}^{-}\right]$
3 directly proportional to the square of $\left[\mathrm{B}^{-}\right]$
4 inversely proportional to the square of $\left[\mathrm{B}^{-}\right]$
5 independent $\left[\mathrm{B}^{-}\right]$
Chemical Equilibrium

228986 The correct order of equilibrium constants for the reaction is
$\mathrm{H}_{2} \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}\stackrel{\mathrm{K}_1}{\rightleftharpoons} \mathrm{H}_{2} \mathrm{C}(\mathrm{OH})_{2}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}+\mathrm{H}_{2} \mathrm{O} \stackrel{\mathrm{K}_2}{\rightleftharpoons} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH})_{2}$
$\mathrm{CH}_{3} \mathrm{COCH}_{3}+\mathrm{H}_{2} \mathrm{O} \stackrel{\mathrm{K}_3}{\rightleftharpoons} \mathrm{CH}_{3} \mathrm{C}(\mathrm{OH})_{2} \mathrm{CH}_{3}$

1 $\mathrm{K}_{1}>\mathrm{K}_{2}>\mathrm{K}_{3}$
2 $\mathrm{K}_{1}<\mathrm{K}_{2}<\mathrm{K}_{3}$
3 $\mathrm{K}_{1}>\mathrm{K}_{3}>\mathrm{K}_{2}$
4 $\mathrm{K}_{1}<\mathrm{K}_{3}<\mathrm{K}_{2}$
Chemical Equilibrium

228995 Final pressure is higher than initial pressure of a container filled with an ideal gas at constant temperature. What will be the value of equilibrium constant?

1 $\mathrm{K}=1.0$
2 $\mathrm{K}=10.0$
3 $\mathrm{K}>1.0$
4 $\mathrm{K}<1.0$
Chemical Equilibrium

228987 Given that the equilibrium constant for the reaction, $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{2SO}_{3}(\mathrm{~g})$
has a value of 278 at a particular temperature. What is the value of the equilibrium constant for the following reaction at the same temperature?
$\mathrm{SO}_{\mathbf{3}}(\mathrm{g}) \rightleftharpoons \mathrm{SO}_{\mathbf{2}}(\mathrm{g})+\frac{\mathbf{1}}{\mathbf{2}} \mathrm{O}_{\mathbf{2}}(\mathrm{g})$

1 $1.8 \times 10^{-3}$
2 $3.6 \times 10^{-3}$
3 $6.0 \times 10^{-2}$
4 $1.3 \times 10^{-5}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Chemical Equilibrium

228980 Equilibrium constant for the reaction, $\mathrm{NH}_{4} \mathrm{OH}+\mathrm{H}^{+} \rightleftharpoons \mathbf{N H}_{4}^{+}+\mathrm{H}_{2} \mathrm{O}$ is $\mathbf{1 . 8} \times 10^{9}$.
Hence, equilibrium constant for
$\mathbf{N H}_{3}(\mathbf{a q})+\mathbf{H}_{2} \mathbf{O} \rightleftharpoons \mathbf{N H}_{4}^{+}+\mathbf{O H}^{-} \mathbf{i s}$ -

1 $1.8 \times 10^{-5}$
2 $1.8 \times 10^{5}$
3 $1.8 \times 10^{-9}$
4 $5.59 \times 10^{-10}$
Chemical Equilibrium

228982 Two equilibria, $\mathbf{A B} \rightleftharpoons \mathbf{A}^{+}+\mathbf{B}^{-}$and $\mathbf{A B}+\mathbf{B}^{-}$
$\rightleftharpoons \mathrm{AB}_{2}^{-}$are simultaneously maintained in a solution with equilibrium constants, $K_{1}$ and $K_{2}$ respectively. The ratio of $\left[\mathrm{A}^{+}\right]$to $\left[\mathrm{AB}_{2}^{-}\right]$in the solution is

1 directly proportional to $\left[\mathrm{B}^{-}\right]$
2 inversely proportional to $\left[\mathrm{B}^{-}\right]$
3 directly proportional to the square of $\left[\mathrm{B}^{-}\right]$
4 inversely proportional to the square of $\left[\mathrm{B}^{-}\right]$
5 independent $\left[\mathrm{B}^{-}\right]$
Chemical Equilibrium

228986 The correct order of equilibrium constants for the reaction is
$\mathrm{H}_{2} \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}\stackrel{\mathrm{K}_1}{\rightleftharpoons} \mathrm{H}_{2} \mathrm{C}(\mathrm{OH})_{2}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}+\mathrm{H}_{2} \mathrm{O} \stackrel{\mathrm{K}_2}{\rightleftharpoons} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH})_{2}$
$\mathrm{CH}_{3} \mathrm{COCH}_{3}+\mathrm{H}_{2} \mathrm{O} \stackrel{\mathrm{K}_3}{\rightleftharpoons} \mathrm{CH}_{3} \mathrm{C}(\mathrm{OH})_{2} \mathrm{CH}_{3}$

1 $\mathrm{K}_{1}>\mathrm{K}_{2}>\mathrm{K}_{3}$
2 $\mathrm{K}_{1}<\mathrm{K}_{2}<\mathrm{K}_{3}$
3 $\mathrm{K}_{1}>\mathrm{K}_{3}>\mathrm{K}_{2}$
4 $\mathrm{K}_{1}<\mathrm{K}_{3}<\mathrm{K}_{2}$
Chemical Equilibrium

228995 Final pressure is higher than initial pressure of a container filled with an ideal gas at constant temperature. What will be the value of equilibrium constant?

1 $\mathrm{K}=1.0$
2 $\mathrm{K}=10.0$
3 $\mathrm{K}>1.0$
4 $\mathrm{K}<1.0$
Chemical Equilibrium

228987 Given that the equilibrium constant for the reaction, $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{2SO}_{3}(\mathrm{~g})$
has a value of 278 at a particular temperature. What is the value of the equilibrium constant for the following reaction at the same temperature?
$\mathrm{SO}_{\mathbf{3}}(\mathrm{g}) \rightleftharpoons \mathrm{SO}_{\mathbf{2}}(\mathrm{g})+\frac{\mathbf{1}}{\mathbf{2}} \mathrm{O}_{\mathbf{2}}(\mathrm{g})$

1 $1.8 \times 10^{-3}$
2 $3.6 \times 10^{-3}$
3 $6.0 \times 10^{-2}$
4 $1.3 \times 10^{-5}$
Chemical Equilibrium

228980 Equilibrium constant for the reaction, $\mathrm{NH}_{4} \mathrm{OH}+\mathrm{H}^{+} \rightleftharpoons \mathbf{N H}_{4}^{+}+\mathrm{H}_{2} \mathrm{O}$ is $\mathbf{1 . 8} \times 10^{9}$.
Hence, equilibrium constant for
$\mathbf{N H}_{3}(\mathbf{a q})+\mathbf{H}_{2} \mathbf{O} \rightleftharpoons \mathbf{N H}_{4}^{+}+\mathbf{O H}^{-} \mathbf{i s}$ -

1 $1.8 \times 10^{-5}$
2 $1.8 \times 10^{5}$
3 $1.8 \times 10^{-9}$
4 $5.59 \times 10^{-10}$
Chemical Equilibrium

228982 Two equilibria, $\mathbf{A B} \rightleftharpoons \mathbf{A}^{+}+\mathbf{B}^{-}$and $\mathbf{A B}+\mathbf{B}^{-}$
$\rightleftharpoons \mathrm{AB}_{2}^{-}$are simultaneously maintained in a solution with equilibrium constants, $K_{1}$ and $K_{2}$ respectively. The ratio of $\left[\mathrm{A}^{+}\right]$to $\left[\mathrm{AB}_{2}^{-}\right]$in the solution is

1 directly proportional to $\left[\mathrm{B}^{-}\right]$
2 inversely proportional to $\left[\mathrm{B}^{-}\right]$
3 directly proportional to the square of $\left[\mathrm{B}^{-}\right]$
4 inversely proportional to the square of $\left[\mathrm{B}^{-}\right]$
5 independent $\left[\mathrm{B}^{-}\right]$
Chemical Equilibrium

228986 The correct order of equilibrium constants for the reaction is
$\mathrm{H}_{2} \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}\stackrel{\mathrm{K}_1}{\rightleftharpoons} \mathrm{H}_{2} \mathrm{C}(\mathrm{OH})_{2}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}+\mathrm{H}_{2} \mathrm{O} \stackrel{\mathrm{K}_2}{\rightleftharpoons} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH})_{2}$
$\mathrm{CH}_{3} \mathrm{COCH}_{3}+\mathrm{H}_{2} \mathrm{O} \stackrel{\mathrm{K}_3}{\rightleftharpoons} \mathrm{CH}_{3} \mathrm{C}(\mathrm{OH})_{2} \mathrm{CH}_{3}$

1 $\mathrm{K}_{1}>\mathrm{K}_{2}>\mathrm{K}_{3}$
2 $\mathrm{K}_{1}<\mathrm{K}_{2}<\mathrm{K}_{3}$
3 $\mathrm{K}_{1}>\mathrm{K}_{3}>\mathrm{K}_{2}$
4 $\mathrm{K}_{1}<\mathrm{K}_{3}<\mathrm{K}_{2}$
Chemical Equilibrium

228995 Final pressure is higher than initial pressure of a container filled with an ideal gas at constant temperature. What will be the value of equilibrium constant?

1 $\mathrm{K}=1.0$
2 $\mathrm{K}=10.0$
3 $\mathrm{K}>1.0$
4 $\mathrm{K}<1.0$
Chemical Equilibrium

228987 Given that the equilibrium constant for the reaction, $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{2SO}_{3}(\mathrm{~g})$
has a value of 278 at a particular temperature. What is the value of the equilibrium constant for the following reaction at the same temperature?
$\mathrm{SO}_{\mathbf{3}}(\mathrm{g}) \rightleftharpoons \mathrm{SO}_{\mathbf{2}}(\mathrm{g})+\frac{\mathbf{1}}{\mathbf{2}} \mathrm{O}_{\mathbf{2}}(\mathrm{g})$

1 $1.8 \times 10^{-3}$
2 $3.6 \times 10^{-3}$
3 $6.0 \times 10^{-2}$
4 $1.3 \times 10^{-5}$
Chemical Equilibrium

228980 Equilibrium constant for the reaction, $\mathrm{NH}_{4} \mathrm{OH}+\mathrm{H}^{+} \rightleftharpoons \mathbf{N H}_{4}^{+}+\mathrm{H}_{2} \mathrm{O}$ is $\mathbf{1 . 8} \times 10^{9}$.
Hence, equilibrium constant for
$\mathbf{N H}_{3}(\mathbf{a q})+\mathbf{H}_{2} \mathbf{O} \rightleftharpoons \mathbf{N H}_{4}^{+}+\mathbf{O H}^{-} \mathbf{i s}$ -

1 $1.8 \times 10^{-5}$
2 $1.8 \times 10^{5}$
3 $1.8 \times 10^{-9}$
4 $5.59 \times 10^{-10}$
Chemical Equilibrium

228982 Two equilibria, $\mathbf{A B} \rightleftharpoons \mathbf{A}^{+}+\mathbf{B}^{-}$and $\mathbf{A B}+\mathbf{B}^{-}$
$\rightleftharpoons \mathrm{AB}_{2}^{-}$are simultaneously maintained in a solution with equilibrium constants, $K_{1}$ and $K_{2}$ respectively. The ratio of $\left[\mathrm{A}^{+}\right]$to $\left[\mathrm{AB}_{2}^{-}\right]$in the solution is

1 directly proportional to $\left[\mathrm{B}^{-}\right]$
2 inversely proportional to $\left[\mathrm{B}^{-}\right]$
3 directly proportional to the square of $\left[\mathrm{B}^{-}\right]$
4 inversely proportional to the square of $\left[\mathrm{B}^{-}\right]$
5 independent $\left[\mathrm{B}^{-}\right]$
Chemical Equilibrium

228986 The correct order of equilibrium constants for the reaction is
$\mathrm{H}_{2} \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}\stackrel{\mathrm{K}_1}{\rightleftharpoons} \mathrm{H}_{2} \mathrm{C}(\mathrm{OH})_{2}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}+\mathrm{H}_{2} \mathrm{O} \stackrel{\mathrm{K}_2}{\rightleftharpoons} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH})_{2}$
$\mathrm{CH}_{3} \mathrm{COCH}_{3}+\mathrm{H}_{2} \mathrm{O} \stackrel{\mathrm{K}_3}{\rightleftharpoons} \mathrm{CH}_{3} \mathrm{C}(\mathrm{OH})_{2} \mathrm{CH}_{3}$

1 $\mathrm{K}_{1}>\mathrm{K}_{2}>\mathrm{K}_{3}$
2 $\mathrm{K}_{1}<\mathrm{K}_{2}<\mathrm{K}_{3}$
3 $\mathrm{K}_{1}>\mathrm{K}_{3}>\mathrm{K}_{2}$
4 $\mathrm{K}_{1}<\mathrm{K}_{3}<\mathrm{K}_{2}$
Chemical Equilibrium

228995 Final pressure is higher than initial pressure of a container filled with an ideal gas at constant temperature. What will be the value of equilibrium constant?

1 $\mathrm{K}=1.0$
2 $\mathrm{K}=10.0$
3 $\mathrm{K}>1.0$
4 $\mathrm{K}<1.0$
Chemical Equilibrium

228987 Given that the equilibrium constant for the reaction, $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{2SO}_{3}(\mathrm{~g})$
has a value of 278 at a particular temperature. What is the value of the equilibrium constant for the following reaction at the same temperature?
$\mathrm{SO}_{\mathbf{3}}(\mathrm{g}) \rightleftharpoons \mathrm{SO}_{\mathbf{2}}(\mathrm{g})+\frac{\mathbf{1}}{\mathbf{2}} \mathrm{O}_{\mathbf{2}}(\mathrm{g})$

1 $1.8 \times 10^{-3}$
2 $3.6 \times 10^{-3}$
3 $6.0 \times 10^{-2}$
4 $1.3 \times 10^{-5}$