228980
Equilibrium constant for the reaction, $\mathrm{NH}_{4} \mathrm{OH}+\mathrm{H}^{+} \rightleftharpoons \mathbf{N H}_{4}^{+}+\mathrm{H}_{2} \mathrm{O}$ is $\mathbf{1 . 8} \times 10^{9}$.
Hence, equilibrium constant for
$\mathbf{N H}_{3}(\mathbf{a q})+\mathbf{H}_{2} \mathbf{O} \rightleftharpoons \mathbf{N H}_{4}^{+}+\mathbf{O H}^{-} \mathbf{i s}$ -
228982
Two equilibria, $\mathbf{A B} \rightleftharpoons \mathbf{A}^{+}+\mathbf{B}^{-}$and $\mathbf{A B}+\mathbf{B}^{-}$
$\rightleftharpoons \mathrm{AB}_{2}^{-}$are simultaneously maintained in a solution with equilibrium constants, $K_{1}$ and $K_{2}$ respectively. The ratio of $\left[\mathrm{A}^{+}\right]$to $\left[\mathrm{AB}_{2}^{-}\right]$in the solution is
228986
The correct order of equilibrium constants for the reaction is
$\mathrm{H}_{2} \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}\stackrel{\mathrm{K}_1}{\rightleftharpoons} \mathrm{H}_{2} \mathrm{C}(\mathrm{OH})_{2}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}+\mathrm{H}_{2} \mathrm{O} \stackrel{\mathrm{K}_2}{\rightleftharpoons} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH})_{2}$
$\mathrm{CH}_{3} \mathrm{COCH}_{3}+\mathrm{H}_{2} \mathrm{O} \stackrel{\mathrm{K}_3}{\rightleftharpoons} \mathrm{CH}_{3} \mathrm{C}(\mathrm{OH})_{2} \mathrm{CH}_{3}$
228987
Given that the equilibrium constant for the reaction, $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{2SO}_{3}(\mathrm{~g})$
has a value of 278 at a particular temperature. What is the value of the equilibrium constant for the following reaction at the same temperature?
$\mathrm{SO}_{\mathbf{3}}(\mathrm{g}) \rightleftharpoons \mathrm{SO}_{\mathbf{2}}(\mathrm{g})+\frac{\mathbf{1}}{\mathbf{2}} \mathrm{O}_{\mathbf{2}}(\mathrm{g})$
228980
Equilibrium constant for the reaction, $\mathrm{NH}_{4} \mathrm{OH}+\mathrm{H}^{+} \rightleftharpoons \mathbf{N H}_{4}^{+}+\mathrm{H}_{2} \mathrm{O}$ is $\mathbf{1 . 8} \times 10^{9}$.
Hence, equilibrium constant for
$\mathbf{N H}_{3}(\mathbf{a q})+\mathbf{H}_{2} \mathbf{O} \rightleftharpoons \mathbf{N H}_{4}^{+}+\mathbf{O H}^{-} \mathbf{i s}$ -
228982
Two equilibria, $\mathbf{A B} \rightleftharpoons \mathbf{A}^{+}+\mathbf{B}^{-}$and $\mathbf{A B}+\mathbf{B}^{-}$
$\rightleftharpoons \mathrm{AB}_{2}^{-}$are simultaneously maintained in a solution with equilibrium constants, $K_{1}$ and $K_{2}$ respectively. The ratio of $\left[\mathrm{A}^{+}\right]$to $\left[\mathrm{AB}_{2}^{-}\right]$in the solution is
228986
The correct order of equilibrium constants for the reaction is
$\mathrm{H}_{2} \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}\stackrel{\mathrm{K}_1}{\rightleftharpoons} \mathrm{H}_{2} \mathrm{C}(\mathrm{OH})_{2}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}+\mathrm{H}_{2} \mathrm{O} \stackrel{\mathrm{K}_2}{\rightleftharpoons} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH})_{2}$
$\mathrm{CH}_{3} \mathrm{COCH}_{3}+\mathrm{H}_{2} \mathrm{O} \stackrel{\mathrm{K}_3}{\rightleftharpoons} \mathrm{CH}_{3} \mathrm{C}(\mathrm{OH})_{2} \mathrm{CH}_{3}$
228987
Given that the equilibrium constant for the reaction, $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{2SO}_{3}(\mathrm{~g})$
has a value of 278 at a particular temperature. What is the value of the equilibrium constant for the following reaction at the same temperature?
$\mathrm{SO}_{\mathbf{3}}(\mathrm{g}) \rightleftharpoons \mathrm{SO}_{\mathbf{2}}(\mathrm{g})+\frac{\mathbf{1}}{\mathbf{2}} \mathrm{O}_{\mathbf{2}}(\mathrm{g})$
228980
Equilibrium constant for the reaction, $\mathrm{NH}_{4} \mathrm{OH}+\mathrm{H}^{+} \rightleftharpoons \mathbf{N H}_{4}^{+}+\mathrm{H}_{2} \mathrm{O}$ is $\mathbf{1 . 8} \times 10^{9}$.
Hence, equilibrium constant for
$\mathbf{N H}_{3}(\mathbf{a q})+\mathbf{H}_{2} \mathbf{O} \rightleftharpoons \mathbf{N H}_{4}^{+}+\mathbf{O H}^{-} \mathbf{i s}$ -
228982
Two equilibria, $\mathbf{A B} \rightleftharpoons \mathbf{A}^{+}+\mathbf{B}^{-}$and $\mathbf{A B}+\mathbf{B}^{-}$
$\rightleftharpoons \mathrm{AB}_{2}^{-}$are simultaneously maintained in a solution with equilibrium constants, $K_{1}$ and $K_{2}$ respectively. The ratio of $\left[\mathrm{A}^{+}\right]$to $\left[\mathrm{AB}_{2}^{-}\right]$in the solution is
228986
The correct order of equilibrium constants for the reaction is
$\mathrm{H}_{2} \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}\stackrel{\mathrm{K}_1}{\rightleftharpoons} \mathrm{H}_{2} \mathrm{C}(\mathrm{OH})_{2}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}+\mathrm{H}_{2} \mathrm{O} \stackrel{\mathrm{K}_2}{\rightleftharpoons} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH})_{2}$
$\mathrm{CH}_{3} \mathrm{COCH}_{3}+\mathrm{H}_{2} \mathrm{O} \stackrel{\mathrm{K}_3}{\rightleftharpoons} \mathrm{CH}_{3} \mathrm{C}(\mathrm{OH})_{2} \mathrm{CH}_{3}$
228987
Given that the equilibrium constant for the reaction, $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{2SO}_{3}(\mathrm{~g})$
has a value of 278 at a particular temperature. What is the value of the equilibrium constant for the following reaction at the same temperature?
$\mathrm{SO}_{\mathbf{3}}(\mathrm{g}) \rightleftharpoons \mathrm{SO}_{\mathbf{2}}(\mathrm{g})+\frac{\mathbf{1}}{\mathbf{2}} \mathrm{O}_{\mathbf{2}}(\mathrm{g})$
228980
Equilibrium constant for the reaction, $\mathrm{NH}_{4} \mathrm{OH}+\mathrm{H}^{+} \rightleftharpoons \mathbf{N H}_{4}^{+}+\mathrm{H}_{2} \mathrm{O}$ is $\mathbf{1 . 8} \times 10^{9}$.
Hence, equilibrium constant for
$\mathbf{N H}_{3}(\mathbf{a q})+\mathbf{H}_{2} \mathbf{O} \rightleftharpoons \mathbf{N H}_{4}^{+}+\mathbf{O H}^{-} \mathbf{i s}$ -
228982
Two equilibria, $\mathbf{A B} \rightleftharpoons \mathbf{A}^{+}+\mathbf{B}^{-}$and $\mathbf{A B}+\mathbf{B}^{-}$
$\rightleftharpoons \mathrm{AB}_{2}^{-}$are simultaneously maintained in a solution with equilibrium constants, $K_{1}$ and $K_{2}$ respectively. The ratio of $\left[\mathrm{A}^{+}\right]$to $\left[\mathrm{AB}_{2}^{-}\right]$in the solution is
228986
The correct order of equilibrium constants for the reaction is
$\mathrm{H}_{2} \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}\stackrel{\mathrm{K}_1}{\rightleftharpoons} \mathrm{H}_{2} \mathrm{C}(\mathrm{OH})_{2}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}+\mathrm{H}_{2} \mathrm{O} \stackrel{\mathrm{K}_2}{\rightleftharpoons} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH})_{2}$
$\mathrm{CH}_{3} \mathrm{COCH}_{3}+\mathrm{H}_{2} \mathrm{O} \stackrel{\mathrm{K}_3}{\rightleftharpoons} \mathrm{CH}_{3} \mathrm{C}(\mathrm{OH})_{2} \mathrm{CH}_{3}$
228987
Given that the equilibrium constant for the reaction, $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{2SO}_{3}(\mathrm{~g})$
has a value of 278 at a particular temperature. What is the value of the equilibrium constant for the following reaction at the same temperature?
$\mathrm{SO}_{\mathbf{3}}(\mathrm{g}) \rightleftharpoons \mathrm{SO}_{\mathbf{2}}(\mathrm{g})+\frac{\mathbf{1}}{\mathbf{2}} \mathrm{O}_{\mathbf{2}}(\mathrm{g})$
228980
Equilibrium constant for the reaction, $\mathrm{NH}_{4} \mathrm{OH}+\mathrm{H}^{+} \rightleftharpoons \mathbf{N H}_{4}^{+}+\mathrm{H}_{2} \mathrm{O}$ is $\mathbf{1 . 8} \times 10^{9}$.
Hence, equilibrium constant for
$\mathbf{N H}_{3}(\mathbf{a q})+\mathbf{H}_{2} \mathbf{O} \rightleftharpoons \mathbf{N H}_{4}^{+}+\mathbf{O H}^{-} \mathbf{i s}$ -
228982
Two equilibria, $\mathbf{A B} \rightleftharpoons \mathbf{A}^{+}+\mathbf{B}^{-}$and $\mathbf{A B}+\mathbf{B}^{-}$
$\rightleftharpoons \mathrm{AB}_{2}^{-}$are simultaneously maintained in a solution with equilibrium constants, $K_{1}$ and $K_{2}$ respectively. The ratio of $\left[\mathrm{A}^{+}\right]$to $\left[\mathrm{AB}_{2}^{-}\right]$in the solution is
228986
The correct order of equilibrium constants for the reaction is
$\mathrm{H}_{2} \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}\stackrel{\mathrm{K}_1}{\rightleftharpoons} \mathrm{H}_{2} \mathrm{C}(\mathrm{OH})_{2}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}+\mathrm{H}_{2} \mathrm{O} \stackrel{\mathrm{K}_2}{\rightleftharpoons} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH})_{2}$
$\mathrm{CH}_{3} \mathrm{COCH}_{3}+\mathrm{H}_{2} \mathrm{O} \stackrel{\mathrm{K}_3}{\rightleftharpoons} \mathrm{CH}_{3} \mathrm{C}(\mathrm{OH})_{2} \mathrm{CH}_{3}$
228987
Given that the equilibrium constant for the reaction, $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{2SO}_{3}(\mathrm{~g})$
has a value of 278 at a particular temperature. What is the value of the equilibrium constant for the following reaction at the same temperature?
$\mathrm{SO}_{\mathbf{3}}(\mathrm{g}) \rightleftharpoons \mathrm{SO}_{\mathbf{2}}(\mathrm{g})+\frac{\mathbf{1}}{\mathbf{2}} \mathrm{O}_{\mathbf{2}}(\mathrm{g})$