228967
For the following equilibrium (omitting charges).
I. $\mathrm{M}+\mathrm{Cl} \rightarrow \mathrm{MCl}, \mathrm{K}_{\mathrm{eq}}=\beta_{1}$
II. $\mathrm{MCl}+\mathrm{Cl} \rightarrow \mathrm{MCl}_{2}, \mathrm{~K}_{\mathrm{eq}}=\beta_{2}$
III. $\mathrm{MCl}_{2}+\mathrm{Cl} \rightarrow \mathrm{MCl}_{3}, \mathrm{~K}_{\mathrm{eq}}=\beta_{3}$
IV. $\mathrm{M}+3 \mathrm{Cl} \rightarrow \mathrm{MCl}_{3}, \mathrm{~K}_{\text {eq }}=\mathrm{K}$
228968
If $\mathbf{A g}^{+}+2 \mathrm{NH}_{3} \rightleftharpoons\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+} ; \mathrm{K}_{1}=1.7 \times 10^{7}$
$\mathrm{Ag}^{+}+\mathrm{Cl}^{-} \rightleftharpoons\mathrm{AgCl} ; \mathrm{K}_{2}=5.4 \times 10^{9}$
Then, for $\mathrm{AgCl}+2 \mathrm{NH}_{3} \rightleftharpoons\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}\right]+\mathrm{Cl}^{-}$
equilibrium constant will be
228969
$X Y_{2}$ dissociates as
$\mathrm{XY}_{2}(\mathrm{~g}) \rightleftharpoons \quad \mathrm{XY}(\mathrm{g})+\mathrm{Y}(\mathrm{g})$
When the initial pressure of $\mathrm{XY}_{2}$ is $600 \mathrm{~mm} \mathrm{Hg}$, the total equilibrium pressure is $800 \mathrm{~mm} \mathrm{Hg}$. Calculate $\mathrm{K}$ for the reaction assuming that the volume of the system remains unchanged.
228967
For the following equilibrium (omitting charges).
I. $\mathrm{M}+\mathrm{Cl} \rightarrow \mathrm{MCl}, \mathrm{K}_{\mathrm{eq}}=\beta_{1}$
II. $\mathrm{MCl}+\mathrm{Cl} \rightarrow \mathrm{MCl}_{2}, \mathrm{~K}_{\mathrm{eq}}=\beta_{2}$
III. $\mathrm{MCl}_{2}+\mathrm{Cl} \rightarrow \mathrm{MCl}_{3}, \mathrm{~K}_{\mathrm{eq}}=\beta_{3}$
IV. $\mathrm{M}+3 \mathrm{Cl} \rightarrow \mathrm{MCl}_{3}, \mathrm{~K}_{\text {eq }}=\mathrm{K}$
228968
If $\mathbf{A g}^{+}+2 \mathrm{NH}_{3} \rightleftharpoons\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+} ; \mathrm{K}_{1}=1.7 \times 10^{7}$
$\mathrm{Ag}^{+}+\mathrm{Cl}^{-} \rightleftharpoons\mathrm{AgCl} ; \mathrm{K}_{2}=5.4 \times 10^{9}$
Then, for $\mathrm{AgCl}+2 \mathrm{NH}_{3} \rightleftharpoons\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}\right]+\mathrm{Cl}^{-}$
equilibrium constant will be
228969
$X Y_{2}$ dissociates as
$\mathrm{XY}_{2}(\mathrm{~g}) \rightleftharpoons \quad \mathrm{XY}(\mathrm{g})+\mathrm{Y}(\mathrm{g})$
When the initial pressure of $\mathrm{XY}_{2}$ is $600 \mathrm{~mm} \mathrm{Hg}$, the total equilibrium pressure is $800 \mathrm{~mm} \mathrm{Hg}$. Calculate $\mathrm{K}$ for the reaction assuming that the volume of the system remains unchanged.
228967
For the following equilibrium (omitting charges).
I. $\mathrm{M}+\mathrm{Cl} \rightarrow \mathrm{MCl}, \mathrm{K}_{\mathrm{eq}}=\beta_{1}$
II. $\mathrm{MCl}+\mathrm{Cl} \rightarrow \mathrm{MCl}_{2}, \mathrm{~K}_{\mathrm{eq}}=\beta_{2}$
III. $\mathrm{MCl}_{2}+\mathrm{Cl} \rightarrow \mathrm{MCl}_{3}, \mathrm{~K}_{\mathrm{eq}}=\beta_{3}$
IV. $\mathrm{M}+3 \mathrm{Cl} \rightarrow \mathrm{MCl}_{3}, \mathrm{~K}_{\text {eq }}=\mathrm{K}$
228968
If $\mathbf{A g}^{+}+2 \mathrm{NH}_{3} \rightleftharpoons\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+} ; \mathrm{K}_{1}=1.7 \times 10^{7}$
$\mathrm{Ag}^{+}+\mathrm{Cl}^{-} \rightleftharpoons\mathrm{AgCl} ; \mathrm{K}_{2}=5.4 \times 10^{9}$
Then, for $\mathrm{AgCl}+2 \mathrm{NH}_{3} \rightleftharpoons\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}\right]+\mathrm{Cl}^{-}$
equilibrium constant will be
228969
$X Y_{2}$ dissociates as
$\mathrm{XY}_{2}(\mathrm{~g}) \rightleftharpoons \quad \mathrm{XY}(\mathrm{g})+\mathrm{Y}(\mathrm{g})$
When the initial pressure of $\mathrm{XY}_{2}$ is $600 \mathrm{~mm} \mathrm{Hg}$, the total equilibrium pressure is $800 \mathrm{~mm} \mathrm{Hg}$. Calculate $\mathrm{K}$ for the reaction assuming that the volume of the system remains unchanged.
228967
For the following equilibrium (omitting charges).
I. $\mathrm{M}+\mathrm{Cl} \rightarrow \mathrm{MCl}, \mathrm{K}_{\mathrm{eq}}=\beta_{1}$
II. $\mathrm{MCl}+\mathrm{Cl} \rightarrow \mathrm{MCl}_{2}, \mathrm{~K}_{\mathrm{eq}}=\beta_{2}$
III. $\mathrm{MCl}_{2}+\mathrm{Cl} \rightarrow \mathrm{MCl}_{3}, \mathrm{~K}_{\mathrm{eq}}=\beta_{3}$
IV. $\mathrm{M}+3 \mathrm{Cl} \rightarrow \mathrm{MCl}_{3}, \mathrm{~K}_{\text {eq }}=\mathrm{K}$
228968
If $\mathbf{A g}^{+}+2 \mathrm{NH}_{3} \rightleftharpoons\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+} ; \mathrm{K}_{1}=1.7 \times 10^{7}$
$\mathrm{Ag}^{+}+\mathrm{Cl}^{-} \rightleftharpoons\mathrm{AgCl} ; \mathrm{K}_{2}=5.4 \times 10^{9}$
Then, for $\mathrm{AgCl}+2 \mathrm{NH}_{3} \rightleftharpoons\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}\right]+\mathrm{Cl}^{-}$
equilibrium constant will be
228969
$X Y_{2}$ dissociates as
$\mathrm{XY}_{2}(\mathrm{~g}) \rightleftharpoons \quad \mathrm{XY}(\mathrm{g})+\mathrm{Y}(\mathrm{g})$
When the initial pressure of $\mathrm{XY}_{2}$ is $600 \mathrm{~mm} \mathrm{Hg}$, the total equilibrium pressure is $800 \mathrm{~mm} \mathrm{Hg}$. Calculate $\mathrm{K}$ for the reaction assuming that the volume of the system remains unchanged.