00. Law of Chemical Equilibrium and Equilibrium Constant
Chemical Equilibrium

228966 If the value of equilibrium constant for a particular reaction is $1.6 \times 10^{12}$, then at equilibrium the system will contain

1 Mostly products
2 Similar amounts of reactions and products
3 All reactions
4 Mostly reactions
Chemical Equilibrium

228967 For the following equilibrium (omitting charges).
I. $\mathrm{M}+\mathrm{Cl} \rightarrow \mathrm{MCl}, \mathrm{K}_{\mathrm{eq}}=\beta_{1}$
II. $\mathrm{MCl}+\mathrm{Cl} \rightarrow \mathrm{MCl}_{2}, \mathrm{~K}_{\mathrm{eq}}=\beta_{2}$
III. $\mathrm{MCl}_{2}+\mathrm{Cl} \rightarrow \mathrm{MCl}_{3}, \mathrm{~K}_{\mathrm{eq}}=\beta_{3}$
IV. $\mathrm{M}+3 \mathrm{Cl} \rightarrow \mathrm{MCl}_{3}, \mathrm{~K}_{\text {eq }}=\mathrm{K}$

1 $\mathrm{K}=\beta_{1} \beta_{2} \beta_{3}$
2 $\log K=\log \beta_{1}+\log \beta_{2}+\log \beta_{3}$
3 $\mathrm{pK}=\mathrm{p}_{\beta_{1}}+\mathrm{p}_{\beta_{2}}+\mathrm{p}_{\beta_{3}}$
4 All of the above
then relationship between $K, \beta_{1}, \beta_{2}$ and $\beta_{3}$ is
JIMPER -2015
Chemical Equilibrium

228968 If $\mathbf{A g}^{+}+2 \mathrm{NH}_{3} \rightleftharpoons\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+} ; \mathrm{K}_{1}=1.7 \times 10^{7}$
$\mathrm{Ag}^{+}+\mathrm{Cl}^{-} \rightleftharpoons\mathrm{AgCl} ; \mathrm{K}_{2}=5.4 \times 10^{9}$
Then, for $\mathrm{AgCl}+2 \mathrm{NH}_{3} \rightleftharpoons\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}\right]+\mathrm{Cl}^{-}$
equilibrium constant will be

1 $4.68 \times 10^{-3}$
2 $5.2 \times 10^{-17}$
3 $0.31 \times 10^{-2}$
4 $3.1 \times 10^{-2}$
JIMPER-2015
Chemical Equilibrium

228969 $X Y_{2}$ dissociates as
$\mathrm{XY}_{2}(\mathrm{~g}) \rightleftharpoons \quad \mathrm{XY}(\mathrm{g})+\mathrm{Y}(\mathrm{g})$
When the initial pressure of $\mathrm{XY}_{2}$ is $600 \mathrm{~mm} \mathrm{Hg}$, the total equilibrium pressure is $800 \mathrm{~mm} \mathrm{Hg}$. Calculate $\mathrm{K}$ for the reaction assuming that the volume of the system remains unchanged.

1 50
2 100
3 166.6
4 400.0
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Chemical Equilibrium

228966 If the value of equilibrium constant for a particular reaction is $1.6 \times 10^{12}$, then at equilibrium the system will contain

1 Mostly products
2 Similar amounts of reactions and products
3 All reactions
4 Mostly reactions
Chemical Equilibrium

228967 For the following equilibrium (omitting charges).
I. $\mathrm{M}+\mathrm{Cl} \rightarrow \mathrm{MCl}, \mathrm{K}_{\mathrm{eq}}=\beta_{1}$
II. $\mathrm{MCl}+\mathrm{Cl} \rightarrow \mathrm{MCl}_{2}, \mathrm{~K}_{\mathrm{eq}}=\beta_{2}$
III. $\mathrm{MCl}_{2}+\mathrm{Cl} \rightarrow \mathrm{MCl}_{3}, \mathrm{~K}_{\mathrm{eq}}=\beta_{3}$
IV. $\mathrm{M}+3 \mathrm{Cl} \rightarrow \mathrm{MCl}_{3}, \mathrm{~K}_{\text {eq }}=\mathrm{K}$

1 $\mathrm{K}=\beta_{1} \beta_{2} \beta_{3}$
2 $\log K=\log \beta_{1}+\log \beta_{2}+\log \beta_{3}$
3 $\mathrm{pK}=\mathrm{p}_{\beta_{1}}+\mathrm{p}_{\beta_{2}}+\mathrm{p}_{\beta_{3}}$
4 All of the above
then relationship between $K, \beta_{1}, \beta_{2}$ and $\beta_{3}$ is
JIMPER -2015
Chemical Equilibrium

228968 If $\mathbf{A g}^{+}+2 \mathrm{NH}_{3} \rightleftharpoons\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+} ; \mathrm{K}_{1}=1.7 \times 10^{7}$
$\mathrm{Ag}^{+}+\mathrm{Cl}^{-} \rightleftharpoons\mathrm{AgCl} ; \mathrm{K}_{2}=5.4 \times 10^{9}$
Then, for $\mathrm{AgCl}+2 \mathrm{NH}_{3} \rightleftharpoons\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}\right]+\mathrm{Cl}^{-}$
equilibrium constant will be

1 $4.68 \times 10^{-3}$
2 $5.2 \times 10^{-17}$
3 $0.31 \times 10^{-2}$
4 $3.1 \times 10^{-2}$
JIMPER-2015
Chemical Equilibrium

228969 $X Y_{2}$ dissociates as
$\mathrm{XY}_{2}(\mathrm{~g}) \rightleftharpoons \quad \mathrm{XY}(\mathrm{g})+\mathrm{Y}(\mathrm{g})$
When the initial pressure of $\mathrm{XY}_{2}$ is $600 \mathrm{~mm} \mathrm{Hg}$, the total equilibrium pressure is $800 \mathrm{~mm} \mathrm{Hg}$. Calculate $\mathrm{K}$ for the reaction assuming that the volume of the system remains unchanged.

1 50
2 100
3 166.6
4 400.0
Chemical Equilibrium

228966 If the value of equilibrium constant for a particular reaction is $1.6 \times 10^{12}$, then at equilibrium the system will contain

1 Mostly products
2 Similar amounts of reactions and products
3 All reactions
4 Mostly reactions
Chemical Equilibrium

228967 For the following equilibrium (omitting charges).
I. $\mathrm{M}+\mathrm{Cl} \rightarrow \mathrm{MCl}, \mathrm{K}_{\mathrm{eq}}=\beta_{1}$
II. $\mathrm{MCl}+\mathrm{Cl} \rightarrow \mathrm{MCl}_{2}, \mathrm{~K}_{\mathrm{eq}}=\beta_{2}$
III. $\mathrm{MCl}_{2}+\mathrm{Cl} \rightarrow \mathrm{MCl}_{3}, \mathrm{~K}_{\mathrm{eq}}=\beta_{3}$
IV. $\mathrm{M}+3 \mathrm{Cl} \rightarrow \mathrm{MCl}_{3}, \mathrm{~K}_{\text {eq }}=\mathrm{K}$

1 $\mathrm{K}=\beta_{1} \beta_{2} \beta_{3}$
2 $\log K=\log \beta_{1}+\log \beta_{2}+\log \beta_{3}$
3 $\mathrm{pK}=\mathrm{p}_{\beta_{1}}+\mathrm{p}_{\beta_{2}}+\mathrm{p}_{\beta_{3}}$
4 All of the above
then relationship between $K, \beta_{1}, \beta_{2}$ and $\beta_{3}$ is
JIMPER -2015
Chemical Equilibrium

228968 If $\mathbf{A g}^{+}+2 \mathrm{NH}_{3} \rightleftharpoons\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+} ; \mathrm{K}_{1}=1.7 \times 10^{7}$
$\mathrm{Ag}^{+}+\mathrm{Cl}^{-} \rightleftharpoons\mathrm{AgCl} ; \mathrm{K}_{2}=5.4 \times 10^{9}$
Then, for $\mathrm{AgCl}+2 \mathrm{NH}_{3} \rightleftharpoons\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}\right]+\mathrm{Cl}^{-}$
equilibrium constant will be

1 $4.68 \times 10^{-3}$
2 $5.2 \times 10^{-17}$
3 $0.31 \times 10^{-2}$
4 $3.1 \times 10^{-2}$
JIMPER-2015
Chemical Equilibrium

228969 $X Y_{2}$ dissociates as
$\mathrm{XY}_{2}(\mathrm{~g}) \rightleftharpoons \quad \mathrm{XY}(\mathrm{g})+\mathrm{Y}(\mathrm{g})$
When the initial pressure of $\mathrm{XY}_{2}$ is $600 \mathrm{~mm} \mathrm{Hg}$, the total equilibrium pressure is $800 \mathrm{~mm} \mathrm{Hg}$. Calculate $\mathrm{K}$ for the reaction assuming that the volume of the system remains unchanged.

1 50
2 100
3 166.6
4 400.0
Chemical Equilibrium

228966 If the value of equilibrium constant for a particular reaction is $1.6 \times 10^{12}$, then at equilibrium the system will contain

1 Mostly products
2 Similar amounts of reactions and products
3 All reactions
4 Mostly reactions
Chemical Equilibrium

228967 For the following equilibrium (omitting charges).
I. $\mathrm{M}+\mathrm{Cl} \rightarrow \mathrm{MCl}, \mathrm{K}_{\mathrm{eq}}=\beta_{1}$
II. $\mathrm{MCl}+\mathrm{Cl} \rightarrow \mathrm{MCl}_{2}, \mathrm{~K}_{\mathrm{eq}}=\beta_{2}$
III. $\mathrm{MCl}_{2}+\mathrm{Cl} \rightarrow \mathrm{MCl}_{3}, \mathrm{~K}_{\mathrm{eq}}=\beta_{3}$
IV. $\mathrm{M}+3 \mathrm{Cl} \rightarrow \mathrm{MCl}_{3}, \mathrm{~K}_{\text {eq }}=\mathrm{K}$

1 $\mathrm{K}=\beta_{1} \beta_{2} \beta_{3}$
2 $\log K=\log \beta_{1}+\log \beta_{2}+\log \beta_{3}$
3 $\mathrm{pK}=\mathrm{p}_{\beta_{1}}+\mathrm{p}_{\beta_{2}}+\mathrm{p}_{\beta_{3}}$
4 All of the above
then relationship between $K, \beta_{1}, \beta_{2}$ and $\beta_{3}$ is
JIMPER -2015
Chemical Equilibrium

228968 If $\mathbf{A g}^{+}+2 \mathrm{NH}_{3} \rightleftharpoons\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+} ; \mathrm{K}_{1}=1.7 \times 10^{7}$
$\mathrm{Ag}^{+}+\mathrm{Cl}^{-} \rightleftharpoons\mathrm{AgCl} ; \mathrm{K}_{2}=5.4 \times 10^{9}$
Then, for $\mathrm{AgCl}+2 \mathrm{NH}_{3} \rightleftharpoons\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}\right]+\mathrm{Cl}^{-}$
equilibrium constant will be

1 $4.68 \times 10^{-3}$
2 $5.2 \times 10^{-17}$
3 $0.31 \times 10^{-2}$
4 $3.1 \times 10^{-2}$
JIMPER-2015
Chemical Equilibrium

228969 $X Y_{2}$ dissociates as
$\mathrm{XY}_{2}(\mathrm{~g}) \rightleftharpoons \quad \mathrm{XY}(\mathrm{g})+\mathrm{Y}(\mathrm{g})$
When the initial pressure of $\mathrm{XY}_{2}$ is $600 \mathrm{~mm} \mathrm{Hg}$, the total equilibrium pressure is $800 \mathrm{~mm} \mathrm{Hg}$. Calculate $\mathrm{K}$ for the reaction assuming that the volume of the system remains unchanged.

1 50
2 100
3 166.6
4 400.0