272763
In the reaction; $A_2(\mathrm{~g})+3 B_2(\mathrm{~g}) \longrightarrow 2 A B_3(\mathrm{~g})$ the standard entropies in $\left(\mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$ of $\mathrm{A}_2(\mathrm{~g})$
$B_2(g)$ and $\mathrm{AB}_3(\mathrm{~g})$ are respectively 190,130 and 195 and the enthalpy change for the reaction is
$-95 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The temperature (in $\mathrm{K}$ ) at which the reaction attains equilibrium is (assuming both the standard entropy change and standard enthalpy change for this reaction are constant over a wide range of temperature)
272734
For one mole of $\mathrm{NaCl}(\mathrm{s})$ the lattice enthalpy is
\[
\begin{array} { l }
{ \left[ \Delta _ { a } \mathrm { H } ^ { - } ( \mathrm { Na } ) = 108.4 , \Delta _ { i } \mathrm { H } ^ { * } ( \mathrm { Na } ) = 496 , \Delta _ { \mathrm { ond } } \mathrm { H } ^ { * } ( \mathrm { Cl } \rangle \right.} \\
= 242 , \Delta _ { \mathrm { od } } \mathrm { H } ^ { \circ } ( \mathrm { Cl } ) = - 348.6 \text { and } \Delta \mathrm { H } \left( \mathrm { NaCl } ^ { 2 } \right) \\
= - 411.2 ]
\end{array}
\]
272763
In the reaction; $A_2(\mathrm{~g})+3 B_2(\mathrm{~g}) \longrightarrow 2 A B_3(\mathrm{~g})$ the standard entropies in $\left(\mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$ of $\mathrm{A}_2(\mathrm{~g})$
$B_2(g)$ and $\mathrm{AB}_3(\mathrm{~g})$ are respectively 190,130 and 195 and the enthalpy change for the reaction is
$-95 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The temperature (in $\mathrm{K}$ ) at which the reaction attains equilibrium is (assuming both the standard entropy change and standard enthalpy change for this reaction are constant over a wide range of temperature)
272734
For one mole of $\mathrm{NaCl}(\mathrm{s})$ the lattice enthalpy is
\[
\begin{array} { l }
{ \left[ \Delta _ { a } \mathrm { H } ^ { - } ( \mathrm { Na } ) = 108.4 , \Delta _ { i } \mathrm { H } ^ { * } ( \mathrm { Na } ) = 496 , \Delta _ { \mathrm { ond } } \mathrm { H } ^ { * } ( \mathrm { Cl } \rangle \right.} \\
= 242 , \Delta _ { \mathrm { od } } \mathrm { H } ^ { \circ } ( \mathrm { Cl } ) = - 348.6 \text { and } \Delta \mathrm { H } \left( \mathrm { NaCl } ^ { 2 } \right) \\
= - 411.2 ]
\end{array}
\]
272763
In the reaction; $A_2(\mathrm{~g})+3 B_2(\mathrm{~g}) \longrightarrow 2 A B_3(\mathrm{~g})$ the standard entropies in $\left(\mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$ of $\mathrm{A}_2(\mathrm{~g})$
$B_2(g)$ and $\mathrm{AB}_3(\mathrm{~g})$ are respectively 190,130 and 195 and the enthalpy change for the reaction is
$-95 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The temperature (in $\mathrm{K}$ ) at which the reaction attains equilibrium is (assuming both the standard entropy change and standard enthalpy change for this reaction are constant over a wide range of temperature)
272734
For one mole of $\mathrm{NaCl}(\mathrm{s})$ the lattice enthalpy is
\[
\begin{array} { l }
{ \left[ \Delta _ { a } \mathrm { H } ^ { - } ( \mathrm { Na } ) = 108.4 , \Delta _ { i } \mathrm { H } ^ { * } ( \mathrm { Na } ) = 496 , \Delta _ { \mathrm { ond } } \mathrm { H } ^ { * } ( \mathrm { Cl } \rangle \right.} \\
= 242 , \Delta _ { \mathrm { od } } \mathrm { H } ^ { \circ } ( \mathrm { Cl } ) = - 348.6 \text { and } \Delta \mathrm { H } \left( \mathrm { NaCl } ^ { 2 } \right) \\
= - 411.2 ]
\end{array}
\]
272763
In the reaction; $A_2(\mathrm{~g})+3 B_2(\mathrm{~g}) \longrightarrow 2 A B_3(\mathrm{~g})$ the standard entropies in $\left(\mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$ of $\mathrm{A}_2(\mathrm{~g})$
$B_2(g)$ and $\mathrm{AB}_3(\mathrm{~g})$ are respectively 190,130 and 195 and the enthalpy change for the reaction is
$-95 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The temperature (in $\mathrm{K}$ ) at which the reaction attains equilibrium is (assuming both the standard entropy change and standard enthalpy change for this reaction are constant over a wide range of temperature)
272734
For one mole of $\mathrm{NaCl}(\mathrm{s})$ the lattice enthalpy is
\[
\begin{array} { l }
{ \left[ \Delta _ { a } \mathrm { H } ^ { - } ( \mathrm { Na } ) = 108.4 , \Delta _ { i } \mathrm { H } ^ { * } ( \mathrm { Na } ) = 496 , \Delta _ { \mathrm { ond } } \mathrm { H } ^ { * } ( \mathrm { Cl } \rangle \right.} \\
= 242 , \Delta _ { \mathrm { od } } \mathrm { H } ^ { \circ } ( \mathrm { Cl } ) = - 348.6 \text { and } \Delta \mathrm { H } \left( \mathrm { NaCl } ^ { 2 } \right) \\
= - 411.2 ]
\end{array}
\]