01. First Law of Thermodynamics and Application
Thermodynamics

272694 A piston filled with $\mathbf{0 . 0 4}$ mole of an ideal gas expands reversibly from $50.0 \mathrm{~mL}$ to $375 \mathrm{~mL}$ at a constant temperature of $37.0^{\circ} \mathrm{C}$. As it does so, it absorbs $208 \mathrm{~J}$ of heat. The values of $q$ and $W$ for the process will be $(R=8.314 \mathrm{~J} / \mathrm{mol} \mathrm{K}$. In $7.5=2.01)$

1 $\mathrm{q}=+208 \mathrm{~J}, \mathrm{~W}=-208 \mathrm{~J}$
2 $q=-208, J, W=-208 \mathrm{~J}$
3 $\mathrm{q}=-208 \mathrm{~J}, \mathrm{~W}=+208 \mathrm{~J}$
4 $\mathrm{q}=+208 \mathrm{~J}, \mathrm{~W}=+208 \mathrm{~J}$
Thermodynamics

272695 Which one of the following equations does not correctly represent the first law of thermodynamics for the given processes involving an ideal gas?
(Assume non-expansion work is zero)

1 Cyclic process: $q=-W$
2 Adiabatic process : $\Delta \mathrm{U}=-\mathrm{W}$
3 Isochoric process: $\Delta \mathrm{U}=\mathrm{q}$
4 Isothermal process: $q=-W$
Thermodynamics

272697 One mole of an ideal gas expands isothermally and reversible from 2 lit. to 20 lit. at $300 \mathrm{~K}$. If the final pressure of the gas is 1 bar, the work done by the gas is

1 $-300 \mathrm{R} \ln 10$
2 $300 \mathrm{R} \ln 10$
3 18
4 -18
Thermodynamics

272698 The compressibility factor for an ideal gas is:

1 $<1$
2 $=1$
3 $>1$
4 always 2
Thermodynamics

272694 A piston filled with $\mathbf{0 . 0 4}$ mole of an ideal gas expands reversibly from $50.0 \mathrm{~mL}$ to $375 \mathrm{~mL}$ at a constant temperature of $37.0^{\circ} \mathrm{C}$. As it does so, it absorbs $208 \mathrm{~J}$ of heat. The values of $q$ and $W$ for the process will be $(R=8.314 \mathrm{~J} / \mathrm{mol} \mathrm{K}$. In $7.5=2.01)$

1 $\mathrm{q}=+208 \mathrm{~J}, \mathrm{~W}=-208 \mathrm{~J}$
2 $q=-208, J, W=-208 \mathrm{~J}$
3 $\mathrm{q}=-208 \mathrm{~J}, \mathrm{~W}=+208 \mathrm{~J}$
4 $\mathrm{q}=+208 \mathrm{~J}, \mathrm{~W}=+208 \mathrm{~J}$
Thermodynamics

272695 Which one of the following equations does not correctly represent the first law of thermodynamics for the given processes involving an ideal gas?
(Assume non-expansion work is zero)

1 Cyclic process: $q=-W$
2 Adiabatic process : $\Delta \mathrm{U}=-\mathrm{W}$
3 Isochoric process: $\Delta \mathrm{U}=\mathrm{q}$
4 Isothermal process: $q=-W$
Thermodynamics

272697 One mole of an ideal gas expands isothermally and reversible from 2 lit. to 20 lit. at $300 \mathrm{~K}$. If the final pressure of the gas is 1 bar, the work done by the gas is

1 $-300 \mathrm{R} \ln 10$
2 $300 \mathrm{R} \ln 10$
3 18
4 -18
Thermodynamics

272698 The compressibility factor for an ideal gas is:

1 $<1$
2 $=1$
3 $>1$
4 always 2
Thermodynamics

272694 A piston filled with $\mathbf{0 . 0 4}$ mole of an ideal gas expands reversibly from $50.0 \mathrm{~mL}$ to $375 \mathrm{~mL}$ at a constant temperature of $37.0^{\circ} \mathrm{C}$. As it does so, it absorbs $208 \mathrm{~J}$ of heat. The values of $q$ and $W$ for the process will be $(R=8.314 \mathrm{~J} / \mathrm{mol} \mathrm{K}$. In $7.5=2.01)$

1 $\mathrm{q}=+208 \mathrm{~J}, \mathrm{~W}=-208 \mathrm{~J}$
2 $q=-208, J, W=-208 \mathrm{~J}$
3 $\mathrm{q}=-208 \mathrm{~J}, \mathrm{~W}=+208 \mathrm{~J}$
4 $\mathrm{q}=+208 \mathrm{~J}, \mathrm{~W}=+208 \mathrm{~J}$
Thermodynamics

272695 Which one of the following equations does not correctly represent the first law of thermodynamics for the given processes involving an ideal gas?
(Assume non-expansion work is zero)

1 Cyclic process: $q=-W$
2 Adiabatic process : $\Delta \mathrm{U}=-\mathrm{W}$
3 Isochoric process: $\Delta \mathrm{U}=\mathrm{q}$
4 Isothermal process: $q=-W$
Thermodynamics

272697 One mole of an ideal gas expands isothermally and reversible from 2 lit. to 20 lit. at $300 \mathrm{~K}$. If the final pressure of the gas is 1 bar, the work done by the gas is

1 $-300 \mathrm{R} \ln 10$
2 $300 \mathrm{R} \ln 10$
3 18
4 -18
Thermodynamics

272698 The compressibility factor for an ideal gas is:

1 $<1$
2 $=1$
3 $>1$
4 always 2
Thermodynamics

272694 A piston filled with $\mathbf{0 . 0 4}$ mole of an ideal gas expands reversibly from $50.0 \mathrm{~mL}$ to $375 \mathrm{~mL}$ at a constant temperature of $37.0^{\circ} \mathrm{C}$. As it does so, it absorbs $208 \mathrm{~J}$ of heat. The values of $q$ and $W$ for the process will be $(R=8.314 \mathrm{~J} / \mathrm{mol} \mathrm{K}$. In $7.5=2.01)$

1 $\mathrm{q}=+208 \mathrm{~J}, \mathrm{~W}=-208 \mathrm{~J}$
2 $q=-208, J, W=-208 \mathrm{~J}$
3 $\mathrm{q}=-208 \mathrm{~J}, \mathrm{~W}=+208 \mathrm{~J}$
4 $\mathrm{q}=+208 \mathrm{~J}, \mathrm{~W}=+208 \mathrm{~J}$
Thermodynamics

272695 Which one of the following equations does not correctly represent the first law of thermodynamics for the given processes involving an ideal gas?
(Assume non-expansion work is zero)

1 Cyclic process: $q=-W$
2 Adiabatic process : $\Delta \mathrm{U}=-\mathrm{W}$
3 Isochoric process: $\Delta \mathrm{U}=\mathrm{q}$
4 Isothermal process: $q=-W$
Thermodynamics

272697 One mole of an ideal gas expands isothermally and reversible from 2 lit. to 20 lit. at $300 \mathrm{~K}$. If the final pressure of the gas is 1 bar, the work done by the gas is

1 $-300 \mathrm{R} \ln 10$
2 $300 \mathrm{R} \ln 10$
3 18
4 -18
Thermodynamics

272698 The compressibility factor for an ideal gas is:

1 $<1$
2 $=1$
3 $>1$
4 always 2
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here