01. First Law of Thermodynamics and Application
Thermodynamics

272699 In adiabatic conditions, 2 mole of $\mathrm{CO}_2$ gas at $300 \mathrm{~K}$ is expanded such that its volume becomes 27 times. Then, the work done is
$\left(\mathrm{C}_{\mathrm{v}}=6 \mathrm{cal} \mathrm{mol}^{-1}\right.$ and $\left.\gamma=1.33\right)$

1 $1400 \mathrm{cal}$
2 $1000 \mathrm{cal}$
3 $900 \mathrm{cal}$
4 $1200 \mathrm{cal}$
Thermodynamics

272701 A gas expands from the volume of $1 \mathrm{~m}^3$ to a volume of $2 \mathrm{~m}^3$ against an external pressure of $10^5 \mathrm{Nm}^{-2}$. The work done by the gas will be

1 $10^2 \mathrm{~kJ}$
2 $10^2 \mathrm{~J}$
3 $10^3 \mathrm{~J}$
4 $10^5 \mathrm{~kJ}$
Thermodynamics

272702 Based on the first law of thermodynamics, which one of the following is correct?

1 For isochoric process, $\Delta \mathrm{V}=0$
$\mathrm{W}=\mathrm{P} \Delta \mathrm{V}=0$
$\therefore \quad \Delta \mathrm{E}=\mathrm{q}$
2 For adiabatic process, $q=0$
$\Delta \mathrm{E}=\mathrm{W}$
3 For isothermal process, $\Delta \mathrm{T}=0 \\Delta \mathrm{E}=0$ $\therefore \quad \mathrm{q}=-\mathrm{W}$
4 For cyclic process, state functions like
$\Delta \mathrm{E}=0$
$\mathrm{q}=-\mathrm{W}$
Thermodynamics

272705 If $P, T, \rho$ and $R$ represents pressure, temperature, density and universal gas constant respectively, then the molar mass of the ideal ga is given by :

1 $\frac{\rho R T}{P}$
2 $\frac{\rho T}{P R}$
3 $\frac{P}{\rho R T}$
4 $\frac{R T}{\rho P}$
Thermodynamics

272707 Three moles of an ideal gas are expanded isothermally from a volume of $300 \mathrm{~cm}^3$ to $2.5 \mathrm{~L}$ at $300 \mathrm{~K}$ against a pressure of $1.9 \mathrm{~atm}$. The work done in joules is

1 $-423.56 \mathrm{~J}$
2 $+423.56 \mathrm{~J}$
3 $-4.18 \mathrm{~J}$
4 $+4.8 \mathrm{~J}$
Thermodynamics

272699 In adiabatic conditions, 2 mole of $\mathrm{CO}_2$ gas at $300 \mathrm{~K}$ is expanded such that its volume becomes 27 times. Then, the work done is
$\left(\mathrm{C}_{\mathrm{v}}=6 \mathrm{cal} \mathrm{mol}^{-1}\right.$ and $\left.\gamma=1.33\right)$

1 $1400 \mathrm{cal}$
2 $1000 \mathrm{cal}$
3 $900 \mathrm{cal}$
4 $1200 \mathrm{cal}$
Thermodynamics

272701 A gas expands from the volume of $1 \mathrm{~m}^3$ to a volume of $2 \mathrm{~m}^3$ against an external pressure of $10^5 \mathrm{Nm}^{-2}$. The work done by the gas will be

1 $10^2 \mathrm{~kJ}$
2 $10^2 \mathrm{~J}$
3 $10^3 \mathrm{~J}$
4 $10^5 \mathrm{~kJ}$
Thermodynamics

272702 Based on the first law of thermodynamics, which one of the following is correct?

1 For isochoric process, $\Delta \mathrm{V}=0$
$\mathrm{W}=\mathrm{P} \Delta \mathrm{V}=0$
$\therefore \quad \Delta \mathrm{E}=\mathrm{q}$
2 For adiabatic process, $q=0$
$\Delta \mathrm{E}=\mathrm{W}$
3 For isothermal process, $\Delta \mathrm{T}=0 \\Delta \mathrm{E}=0$ $\therefore \quad \mathrm{q}=-\mathrm{W}$
4 For cyclic process, state functions like
$\Delta \mathrm{E}=0$
$\mathrm{q}=-\mathrm{W}$
Thermodynamics

272705 If $P, T, \rho$ and $R$ represents pressure, temperature, density and universal gas constant respectively, then the molar mass of the ideal ga is given by :

1 $\frac{\rho R T}{P}$
2 $\frac{\rho T}{P R}$
3 $\frac{P}{\rho R T}$
4 $\frac{R T}{\rho P}$
Thermodynamics

272707 Three moles of an ideal gas are expanded isothermally from a volume of $300 \mathrm{~cm}^3$ to $2.5 \mathrm{~L}$ at $300 \mathrm{~K}$ against a pressure of $1.9 \mathrm{~atm}$. The work done in joules is

1 $-423.56 \mathrm{~J}$
2 $+423.56 \mathrm{~J}$
3 $-4.18 \mathrm{~J}$
4 $+4.8 \mathrm{~J}$
Thermodynamics

272699 In adiabatic conditions, 2 mole of $\mathrm{CO}_2$ gas at $300 \mathrm{~K}$ is expanded such that its volume becomes 27 times. Then, the work done is
$\left(\mathrm{C}_{\mathrm{v}}=6 \mathrm{cal} \mathrm{mol}^{-1}\right.$ and $\left.\gamma=1.33\right)$

1 $1400 \mathrm{cal}$
2 $1000 \mathrm{cal}$
3 $900 \mathrm{cal}$
4 $1200 \mathrm{cal}$
Thermodynamics

272701 A gas expands from the volume of $1 \mathrm{~m}^3$ to a volume of $2 \mathrm{~m}^3$ against an external pressure of $10^5 \mathrm{Nm}^{-2}$. The work done by the gas will be

1 $10^2 \mathrm{~kJ}$
2 $10^2 \mathrm{~J}$
3 $10^3 \mathrm{~J}$
4 $10^5 \mathrm{~kJ}$
Thermodynamics

272702 Based on the first law of thermodynamics, which one of the following is correct?

1 For isochoric process, $\Delta \mathrm{V}=0$
$\mathrm{W}=\mathrm{P} \Delta \mathrm{V}=0$
$\therefore \quad \Delta \mathrm{E}=\mathrm{q}$
2 For adiabatic process, $q=0$
$\Delta \mathrm{E}=\mathrm{W}$
3 For isothermal process, $\Delta \mathrm{T}=0 \\Delta \mathrm{E}=0$ $\therefore \quad \mathrm{q}=-\mathrm{W}$
4 For cyclic process, state functions like
$\Delta \mathrm{E}=0$
$\mathrm{q}=-\mathrm{W}$
Thermodynamics

272705 If $P, T, \rho$ and $R$ represents pressure, temperature, density and universal gas constant respectively, then the molar mass of the ideal ga is given by :

1 $\frac{\rho R T}{P}$
2 $\frac{\rho T}{P R}$
3 $\frac{P}{\rho R T}$
4 $\frac{R T}{\rho P}$
Thermodynamics

272707 Three moles of an ideal gas are expanded isothermally from a volume of $300 \mathrm{~cm}^3$ to $2.5 \mathrm{~L}$ at $300 \mathrm{~K}$ against a pressure of $1.9 \mathrm{~atm}$. The work done in joules is

1 $-423.56 \mathrm{~J}$
2 $+423.56 \mathrm{~J}$
3 $-4.18 \mathrm{~J}$
4 $+4.8 \mathrm{~J}$
Thermodynamics

272699 In adiabatic conditions, 2 mole of $\mathrm{CO}_2$ gas at $300 \mathrm{~K}$ is expanded such that its volume becomes 27 times. Then, the work done is
$\left(\mathrm{C}_{\mathrm{v}}=6 \mathrm{cal} \mathrm{mol}^{-1}\right.$ and $\left.\gamma=1.33\right)$

1 $1400 \mathrm{cal}$
2 $1000 \mathrm{cal}$
3 $900 \mathrm{cal}$
4 $1200 \mathrm{cal}$
Thermodynamics

272701 A gas expands from the volume of $1 \mathrm{~m}^3$ to a volume of $2 \mathrm{~m}^3$ against an external pressure of $10^5 \mathrm{Nm}^{-2}$. The work done by the gas will be

1 $10^2 \mathrm{~kJ}$
2 $10^2 \mathrm{~J}$
3 $10^3 \mathrm{~J}$
4 $10^5 \mathrm{~kJ}$
Thermodynamics

272702 Based on the first law of thermodynamics, which one of the following is correct?

1 For isochoric process, $\Delta \mathrm{V}=0$
$\mathrm{W}=\mathrm{P} \Delta \mathrm{V}=0$
$\therefore \quad \Delta \mathrm{E}=\mathrm{q}$
2 For adiabatic process, $q=0$
$\Delta \mathrm{E}=\mathrm{W}$
3 For isothermal process, $\Delta \mathrm{T}=0 \\Delta \mathrm{E}=0$ $\therefore \quad \mathrm{q}=-\mathrm{W}$
4 For cyclic process, state functions like
$\Delta \mathrm{E}=0$
$\mathrm{q}=-\mathrm{W}$
Thermodynamics

272705 If $P, T, \rho$ and $R$ represents pressure, temperature, density and universal gas constant respectively, then the molar mass of the ideal ga is given by :

1 $\frac{\rho R T}{P}$
2 $\frac{\rho T}{P R}$
3 $\frac{P}{\rho R T}$
4 $\frac{R T}{\rho P}$
Thermodynamics

272707 Three moles of an ideal gas are expanded isothermally from a volume of $300 \mathrm{~cm}^3$ to $2.5 \mathrm{~L}$ at $300 \mathrm{~K}$ against a pressure of $1.9 \mathrm{~atm}$. The work done in joules is

1 $-423.56 \mathrm{~J}$
2 $+423.56 \mathrm{~J}$
3 $-4.18 \mathrm{~J}$
4 $+4.8 \mathrm{~J}$
Thermodynamics

272699 In adiabatic conditions, 2 mole of $\mathrm{CO}_2$ gas at $300 \mathrm{~K}$ is expanded such that its volume becomes 27 times. Then, the work done is
$\left(\mathrm{C}_{\mathrm{v}}=6 \mathrm{cal} \mathrm{mol}^{-1}\right.$ and $\left.\gamma=1.33\right)$

1 $1400 \mathrm{cal}$
2 $1000 \mathrm{cal}$
3 $900 \mathrm{cal}$
4 $1200 \mathrm{cal}$
Thermodynamics

272701 A gas expands from the volume of $1 \mathrm{~m}^3$ to a volume of $2 \mathrm{~m}^3$ against an external pressure of $10^5 \mathrm{Nm}^{-2}$. The work done by the gas will be

1 $10^2 \mathrm{~kJ}$
2 $10^2 \mathrm{~J}$
3 $10^3 \mathrm{~J}$
4 $10^5 \mathrm{~kJ}$
Thermodynamics

272702 Based on the first law of thermodynamics, which one of the following is correct?

1 For isochoric process, $\Delta \mathrm{V}=0$
$\mathrm{W}=\mathrm{P} \Delta \mathrm{V}=0$
$\therefore \quad \Delta \mathrm{E}=\mathrm{q}$
2 For adiabatic process, $q=0$
$\Delta \mathrm{E}=\mathrm{W}$
3 For isothermal process, $\Delta \mathrm{T}=0 \\Delta \mathrm{E}=0$ $\therefore \quad \mathrm{q}=-\mathrm{W}$
4 For cyclic process, state functions like
$\Delta \mathrm{E}=0$
$\mathrm{q}=-\mathrm{W}$
Thermodynamics

272705 If $P, T, \rho$ and $R$ represents pressure, temperature, density and universal gas constant respectively, then the molar mass of the ideal ga is given by :

1 $\frac{\rho R T}{P}$
2 $\frac{\rho T}{P R}$
3 $\frac{P}{\rho R T}$
4 $\frac{R T}{\rho P}$
Thermodynamics

272707 Three moles of an ideal gas are expanded isothermally from a volume of $300 \mathrm{~cm}^3$ to $2.5 \mathrm{~L}$ at $300 \mathrm{~K}$ against a pressure of $1.9 \mathrm{~atm}$. The work done in joules is

1 $-423.56 \mathrm{~J}$
2 $+423.56 \mathrm{~J}$
3 $-4.18 \mathrm{~J}$
4 $+4.8 \mathrm{~J}$