00. Thermodynamics Terms
Thermodynamics

272423 The Gibbs free energy for the decomposition of $\mathrm{Al}_2 \mathrm{O}_3$ at $500^{\circ} \mathrm{C}$ is $482.5 \mathrm{~kJ} / \mathrm{mol}$. The potential difference needed for electrolytic reduction of $\mathrm{Al}_2 \mathrm{O}_3$ at $500^{\circ} \mathrm{C}$ is at least

1 $2.5 \mathrm{~V}$
2 $5.0 \mathrm{~V}$
3 $1.25 \mathrm{~V}$
4 $4.5 \mathrm{~V}$
Thermodynamics

272425 An ideal gas initially at temperature, pressure and volume, $27^{\circ} \mathrm{C}, 1.00$ bar and $10 \mathrm{~L}$, respectively is heated at constant volume until pressure is 10.0 bar; it then undergoes a reversible isothermal expansion until pressure is 1.00 bar. What is the total work $W$, during this process?

1 $-23.02 \times 10^3 \mathrm{~J}$
2 $-14.0 \times 10^3 \mathrm{~J}$
3 $14.0 \times 10^3 \mathrm{~J}$
4 Zero
Thermodynamics

272426 For the given PV isotherms, which of the following is correct for $T_1, T_2, T_3$ ?

1 \(\mathrm{T}_1<\mathrm{T}_2<\mathrm{T}_3\)
2 \(\mathrm{T}_3<\mathrm{T}_2<\mathrm{T}_1\)
3 \(\mathrm{T}_2<\mathrm{T}_3<\mathrm{T}_1\)
4 \(\mathrm{T}_1>\mathrm{T}_3>\mathrm{T}_2\)
Thermodynamics

272432 Calculate the entropy change for
$\mathrm{CH}_4(\mathrm{~g})+\mathrm{H}_2 \mathrm{O}(\mathrm{g}) \rightarrow 3 \mathrm{H}_2(\mathrm{~g})+\mathrm{CO}(\mathrm{g})$
$\mathrm{JK}^{-1}$ mole $^{-1}$ are $186.2,188.7,130.6,197.6$ respectively. The entropy change is

1 $-46 \mathrm{JK}^{-1} \mathrm{~mole}^{-1}$
2 $+46 \mathrm{JK}^{-1} \mathrm{~mole}^{-1}$
3 $-214.8 \mathrm{JK}^{-1} \mathrm{~mole}^{-1}$
4 $+214.8 \mathrm{JK}^{-1} \mathrm{~mole}^{-1}$
Thermodynamics

272438 For the gaseous reaction $\mathrm{N}_2 \mathrm{O}_4(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_2(\mathrm{~g})$

1 $\Delta \mathrm{H}=0$
2 $\Delta \mathrm{H}=\Delta \mathrm{U}$
3 $\Delta \mathrm{H}<\Delta \mathrm{U}$
4 $\Delta \mathrm{H}>\Delta \mathrm{U}$
Thermodynamics

272423 The Gibbs free energy for the decomposition of $\mathrm{Al}_2 \mathrm{O}_3$ at $500^{\circ} \mathrm{C}$ is $482.5 \mathrm{~kJ} / \mathrm{mol}$. The potential difference needed for electrolytic reduction of $\mathrm{Al}_2 \mathrm{O}_3$ at $500^{\circ} \mathrm{C}$ is at least

1 $2.5 \mathrm{~V}$
2 $5.0 \mathrm{~V}$
3 $1.25 \mathrm{~V}$
4 $4.5 \mathrm{~V}$
Thermodynamics

272425 An ideal gas initially at temperature, pressure and volume, $27^{\circ} \mathrm{C}, 1.00$ bar and $10 \mathrm{~L}$, respectively is heated at constant volume until pressure is 10.0 bar; it then undergoes a reversible isothermal expansion until pressure is 1.00 bar. What is the total work $W$, during this process?

1 $-23.02 \times 10^3 \mathrm{~J}$
2 $-14.0 \times 10^3 \mathrm{~J}$
3 $14.0 \times 10^3 \mathrm{~J}$
4 Zero
Thermodynamics

272426 For the given PV isotherms, which of the following is correct for $T_1, T_2, T_3$ ?

1 \(\mathrm{T}_1<\mathrm{T}_2<\mathrm{T}_3\)
2 \(\mathrm{T}_3<\mathrm{T}_2<\mathrm{T}_1\)
3 \(\mathrm{T}_2<\mathrm{T}_3<\mathrm{T}_1\)
4 \(\mathrm{T}_1>\mathrm{T}_3>\mathrm{T}_2\)
Thermodynamics

272432 Calculate the entropy change for
$\mathrm{CH}_4(\mathrm{~g})+\mathrm{H}_2 \mathrm{O}(\mathrm{g}) \rightarrow 3 \mathrm{H}_2(\mathrm{~g})+\mathrm{CO}(\mathrm{g})$
$\mathrm{JK}^{-1}$ mole $^{-1}$ are $186.2,188.7,130.6,197.6$ respectively. The entropy change is

1 $-46 \mathrm{JK}^{-1} \mathrm{~mole}^{-1}$
2 $+46 \mathrm{JK}^{-1} \mathrm{~mole}^{-1}$
3 $-214.8 \mathrm{JK}^{-1} \mathrm{~mole}^{-1}$
4 $+214.8 \mathrm{JK}^{-1} \mathrm{~mole}^{-1}$
Thermodynamics

272438 For the gaseous reaction $\mathrm{N}_2 \mathrm{O}_4(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_2(\mathrm{~g})$

1 $\Delta \mathrm{H}=0$
2 $\Delta \mathrm{H}=\Delta \mathrm{U}$
3 $\Delta \mathrm{H}<\Delta \mathrm{U}$
4 $\Delta \mathrm{H}>\Delta \mathrm{U}$
Thermodynamics

272423 The Gibbs free energy for the decomposition of $\mathrm{Al}_2 \mathrm{O}_3$ at $500^{\circ} \mathrm{C}$ is $482.5 \mathrm{~kJ} / \mathrm{mol}$. The potential difference needed for electrolytic reduction of $\mathrm{Al}_2 \mathrm{O}_3$ at $500^{\circ} \mathrm{C}$ is at least

1 $2.5 \mathrm{~V}$
2 $5.0 \mathrm{~V}$
3 $1.25 \mathrm{~V}$
4 $4.5 \mathrm{~V}$
Thermodynamics

272425 An ideal gas initially at temperature, pressure and volume, $27^{\circ} \mathrm{C}, 1.00$ bar and $10 \mathrm{~L}$, respectively is heated at constant volume until pressure is 10.0 bar; it then undergoes a reversible isothermal expansion until pressure is 1.00 bar. What is the total work $W$, during this process?

1 $-23.02 \times 10^3 \mathrm{~J}$
2 $-14.0 \times 10^3 \mathrm{~J}$
3 $14.0 \times 10^3 \mathrm{~J}$
4 Zero
Thermodynamics

272426 For the given PV isotherms, which of the following is correct for $T_1, T_2, T_3$ ?

1 \(\mathrm{T}_1<\mathrm{T}_2<\mathrm{T}_3\)
2 \(\mathrm{T}_3<\mathrm{T}_2<\mathrm{T}_1\)
3 \(\mathrm{T}_2<\mathrm{T}_3<\mathrm{T}_1\)
4 \(\mathrm{T}_1>\mathrm{T}_3>\mathrm{T}_2\)
Thermodynamics

272432 Calculate the entropy change for
$\mathrm{CH}_4(\mathrm{~g})+\mathrm{H}_2 \mathrm{O}(\mathrm{g}) \rightarrow 3 \mathrm{H}_2(\mathrm{~g})+\mathrm{CO}(\mathrm{g})$
$\mathrm{JK}^{-1}$ mole $^{-1}$ are $186.2,188.7,130.6,197.6$ respectively. The entropy change is

1 $-46 \mathrm{JK}^{-1} \mathrm{~mole}^{-1}$
2 $+46 \mathrm{JK}^{-1} \mathrm{~mole}^{-1}$
3 $-214.8 \mathrm{JK}^{-1} \mathrm{~mole}^{-1}$
4 $+214.8 \mathrm{JK}^{-1} \mathrm{~mole}^{-1}$
Thermodynamics

272438 For the gaseous reaction $\mathrm{N}_2 \mathrm{O}_4(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_2(\mathrm{~g})$

1 $\Delta \mathrm{H}=0$
2 $\Delta \mathrm{H}=\Delta \mathrm{U}$
3 $\Delta \mathrm{H}<\Delta \mathrm{U}$
4 $\Delta \mathrm{H}>\Delta \mathrm{U}$
Thermodynamics

272423 The Gibbs free energy for the decomposition of $\mathrm{Al}_2 \mathrm{O}_3$ at $500^{\circ} \mathrm{C}$ is $482.5 \mathrm{~kJ} / \mathrm{mol}$. The potential difference needed for electrolytic reduction of $\mathrm{Al}_2 \mathrm{O}_3$ at $500^{\circ} \mathrm{C}$ is at least

1 $2.5 \mathrm{~V}$
2 $5.0 \mathrm{~V}$
3 $1.25 \mathrm{~V}$
4 $4.5 \mathrm{~V}$
Thermodynamics

272425 An ideal gas initially at temperature, pressure and volume, $27^{\circ} \mathrm{C}, 1.00$ bar and $10 \mathrm{~L}$, respectively is heated at constant volume until pressure is 10.0 bar; it then undergoes a reversible isothermal expansion until pressure is 1.00 bar. What is the total work $W$, during this process?

1 $-23.02 \times 10^3 \mathrm{~J}$
2 $-14.0 \times 10^3 \mathrm{~J}$
3 $14.0 \times 10^3 \mathrm{~J}$
4 Zero
Thermodynamics

272426 For the given PV isotherms, which of the following is correct for $T_1, T_2, T_3$ ?

1 \(\mathrm{T}_1<\mathrm{T}_2<\mathrm{T}_3\)
2 \(\mathrm{T}_3<\mathrm{T}_2<\mathrm{T}_1\)
3 \(\mathrm{T}_2<\mathrm{T}_3<\mathrm{T}_1\)
4 \(\mathrm{T}_1>\mathrm{T}_3>\mathrm{T}_2\)
Thermodynamics

272432 Calculate the entropy change for
$\mathrm{CH}_4(\mathrm{~g})+\mathrm{H}_2 \mathrm{O}(\mathrm{g}) \rightarrow 3 \mathrm{H}_2(\mathrm{~g})+\mathrm{CO}(\mathrm{g})$
$\mathrm{JK}^{-1}$ mole $^{-1}$ are $186.2,188.7,130.6,197.6$ respectively. The entropy change is

1 $-46 \mathrm{JK}^{-1} \mathrm{~mole}^{-1}$
2 $+46 \mathrm{JK}^{-1} \mathrm{~mole}^{-1}$
3 $-214.8 \mathrm{JK}^{-1} \mathrm{~mole}^{-1}$
4 $+214.8 \mathrm{JK}^{-1} \mathrm{~mole}^{-1}$
Thermodynamics

272438 For the gaseous reaction $\mathrm{N}_2 \mathrm{O}_4(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_2(\mathrm{~g})$

1 $\Delta \mathrm{H}=0$
2 $\Delta \mathrm{H}=\Delta \mathrm{U}$
3 $\Delta \mathrm{H}<\Delta \mathrm{U}$
4 $\Delta \mathrm{H}>\Delta \mathrm{U}$
Thermodynamics

272423 The Gibbs free energy for the decomposition of $\mathrm{Al}_2 \mathrm{O}_3$ at $500^{\circ} \mathrm{C}$ is $482.5 \mathrm{~kJ} / \mathrm{mol}$. The potential difference needed for electrolytic reduction of $\mathrm{Al}_2 \mathrm{O}_3$ at $500^{\circ} \mathrm{C}$ is at least

1 $2.5 \mathrm{~V}$
2 $5.0 \mathrm{~V}$
3 $1.25 \mathrm{~V}$
4 $4.5 \mathrm{~V}$
Thermodynamics

272425 An ideal gas initially at temperature, pressure and volume, $27^{\circ} \mathrm{C}, 1.00$ bar and $10 \mathrm{~L}$, respectively is heated at constant volume until pressure is 10.0 bar; it then undergoes a reversible isothermal expansion until pressure is 1.00 bar. What is the total work $W$, during this process?

1 $-23.02 \times 10^3 \mathrm{~J}$
2 $-14.0 \times 10^3 \mathrm{~J}$
3 $14.0 \times 10^3 \mathrm{~J}$
4 Zero
Thermodynamics

272426 For the given PV isotherms, which of the following is correct for $T_1, T_2, T_3$ ?

1 \(\mathrm{T}_1<\mathrm{T}_2<\mathrm{T}_3\)
2 \(\mathrm{T}_3<\mathrm{T}_2<\mathrm{T}_1\)
3 \(\mathrm{T}_2<\mathrm{T}_3<\mathrm{T}_1\)
4 \(\mathrm{T}_1>\mathrm{T}_3>\mathrm{T}_2\)
Thermodynamics

272432 Calculate the entropy change for
$\mathrm{CH}_4(\mathrm{~g})+\mathrm{H}_2 \mathrm{O}(\mathrm{g}) \rightarrow 3 \mathrm{H}_2(\mathrm{~g})+\mathrm{CO}(\mathrm{g})$
$\mathrm{JK}^{-1}$ mole $^{-1}$ are $186.2,188.7,130.6,197.6$ respectively. The entropy change is

1 $-46 \mathrm{JK}^{-1} \mathrm{~mole}^{-1}$
2 $+46 \mathrm{JK}^{-1} \mathrm{~mole}^{-1}$
3 $-214.8 \mathrm{JK}^{-1} \mathrm{~mole}^{-1}$
4 $+214.8 \mathrm{JK}^{-1} \mathrm{~mole}^{-1}$
Thermodynamics

272438 For the gaseous reaction $\mathrm{N}_2 \mathrm{O}_4(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_2(\mathrm{~g})$

1 $\Delta \mathrm{H}=0$
2 $\Delta \mathrm{H}=\Delta \mathrm{U}$
3 $\Delta \mathrm{H}<\Delta \mathrm{U}$
4 $\Delta \mathrm{H}>\Delta \mathrm{U}$