03. Uncertainty Principle
Structure of Atom

238833 Given : The mass of electron is $9.11 \times 10^{-31} \mathrm{~kg}$. Planck constant is $6.626 \times 10^{-34} \mathrm{Js}$, the uncertainty involved in the measurement of velocity within a distance of $0.1 \AA \dot{\AA}$ is

1 $5.79 \times 10^5 \mathrm{~m} \mathrm{~s}^{-1}$
2 $5.79 \times 10^6 \mathrm{~m} \mathrm{~s}^{-1}$
3 $5.79 \times 10^7 \mathrm{~m} \mathrm{~s}^{-1}$
4 $5.79 \times 10^8 \mathrm{~m} \mathrm{~s}^{-1}$
Structure of Atom

238834 The uncertainty in momentum of an electron is $1 \times 10^{-5} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$. The uncertainty in its position will be $\left(\mathrm{h}=6.62 \times 10^{-34} \mathrm{~kg} \mathrm{~m}^2 / \mathrm{s}\right)$

1 $5.27 \times 10^{-30} \mathrm{~m}$
2 $1.05 \times 10^{-26} \mathrm{~m}$
3 $1.05 \times 10^{-28} \mathrm{~m}$
4 $5.25 \times 10^{-28} \mathrm{~m}$
Structure of Atom

238836 Uncertainty in position of an electron (mass = $9.1 \times 10^{-28}$ g) moving with a velocity of $3 \times 10^4$ $\mathrm{cm} / \mathrm{s}$ accurate upto $0.001 \%$ will be
(use $h /(4 \pi)$ in uncertainity expression where $h$ $=6.626 \times 10^{-27}$ erg second)

1 $5.76 \mathrm{~cm}$
2 $7.68 \mathrm{~cm}$
3 $1.93 \mathrm{~cm}$
4 $3.84 \mathrm{~cm}$
Structure of Atom

238837 If $\mathbf{E}_e, \mathbf{E}_\alpha$ and $\mathbf{E}_{\mathrm{p}}$ represent the kinetic energies of an electron, $\alpha$-particle and a proton respectively each moving with same de-Broglie wavelength then

1 $E_{\mathrm{e}}=E_\alpha=E_p$
2 $\mathrm{E}_{\mathrm{e}}>\mathrm{E}_\alpha>\mathrm{E}_{\mathrm{p}}$
3 $\mathrm{E}_\alpha>\mathrm{E}_{\mathrm{p}}>\mathrm{E}_{\mathrm{e}}$
4 $\mathrm{E}_{\mathrm{e}}>\mathrm{E}_{\mathrm{p}}>\mathrm{E}_\alpha$
Structure of Atom

238833 Given : The mass of electron is $9.11 \times 10^{-31} \mathrm{~kg}$. Planck constant is $6.626 \times 10^{-34} \mathrm{Js}$, the uncertainty involved in the measurement of velocity within a distance of $0.1 \AA \dot{\AA}$ is

1 $5.79 \times 10^5 \mathrm{~m} \mathrm{~s}^{-1}$
2 $5.79 \times 10^6 \mathrm{~m} \mathrm{~s}^{-1}$
3 $5.79 \times 10^7 \mathrm{~m} \mathrm{~s}^{-1}$
4 $5.79 \times 10^8 \mathrm{~m} \mathrm{~s}^{-1}$
Structure of Atom

238834 The uncertainty in momentum of an electron is $1 \times 10^{-5} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$. The uncertainty in its position will be $\left(\mathrm{h}=6.62 \times 10^{-34} \mathrm{~kg} \mathrm{~m}^2 / \mathrm{s}\right)$

1 $5.27 \times 10^{-30} \mathrm{~m}$
2 $1.05 \times 10^{-26} \mathrm{~m}$
3 $1.05 \times 10^{-28} \mathrm{~m}$
4 $5.25 \times 10^{-28} \mathrm{~m}$
Structure of Atom

238836 Uncertainty in position of an electron (mass = $9.1 \times 10^{-28}$ g) moving with a velocity of $3 \times 10^4$ $\mathrm{cm} / \mathrm{s}$ accurate upto $0.001 \%$ will be
(use $h /(4 \pi)$ in uncertainity expression where $h$ $=6.626 \times 10^{-27}$ erg second)

1 $5.76 \mathrm{~cm}$
2 $7.68 \mathrm{~cm}$
3 $1.93 \mathrm{~cm}$
4 $3.84 \mathrm{~cm}$
Structure of Atom

238837 If $\mathbf{E}_e, \mathbf{E}_\alpha$ and $\mathbf{E}_{\mathrm{p}}$ represent the kinetic energies of an electron, $\alpha$-particle and a proton respectively each moving with same de-Broglie wavelength then

1 $E_{\mathrm{e}}=E_\alpha=E_p$
2 $\mathrm{E}_{\mathrm{e}}>\mathrm{E}_\alpha>\mathrm{E}_{\mathrm{p}}$
3 $\mathrm{E}_\alpha>\mathrm{E}_{\mathrm{p}}>\mathrm{E}_{\mathrm{e}}$
4 $\mathrm{E}_{\mathrm{e}}>\mathrm{E}_{\mathrm{p}}>\mathrm{E}_\alpha$
Structure of Atom

238833 Given : The mass of electron is $9.11 \times 10^{-31} \mathrm{~kg}$. Planck constant is $6.626 \times 10^{-34} \mathrm{Js}$, the uncertainty involved in the measurement of velocity within a distance of $0.1 \AA \dot{\AA}$ is

1 $5.79 \times 10^5 \mathrm{~m} \mathrm{~s}^{-1}$
2 $5.79 \times 10^6 \mathrm{~m} \mathrm{~s}^{-1}$
3 $5.79 \times 10^7 \mathrm{~m} \mathrm{~s}^{-1}$
4 $5.79 \times 10^8 \mathrm{~m} \mathrm{~s}^{-1}$
Structure of Atom

238834 The uncertainty in momentum of an electron is $1 \times 10^{-5} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$. The uncertainty in its position will be $\left(\mathrm{h}=6.62 \times 10^{-34} \mathrm{~kg} \mathrm{~m}^2 / \mathrm{s}\right)$

1 $5.27 \times 10^{-30} \mathrm{~m}$
2 $1.05 \times 10^{-26} \mathrm{~m}$
3 $1.05 \times 10^{-28} \mathrm{~m}$
4 $5.25 \times 10^{-28} \mathrm{~m}$
Structure of Atom

238836 Uncertainty in position of an electron (mass = $9.1 \times 10^{-28}$ g) moving with a velocity of $3 \times 10^4$ $\mathrm{cm} / \mathrm{s}$ accurate upto $0.001 \%$ will be
(use $h /(4 \pi)$ in uncertainity expression where $h$ $=6.626 \times 10^{-27}$ erg second)

1 $5.76 \mathrm{~cm}$
2 $7.68 \mathrm{~cm}$
3 $1.93 \mathrm{~cm}$
4 $3.84 \mathrm{~cm}$
Structure of Atom

238837 If $\mathbf{E}_e, \mathbf{E}_\alpha$ and $\mathbf{E}_{\mathrm{p}}$ represent the kinetic energies of an electron, $\alpha$-particle and a proton respectively each moving with same de-Broglie wavelength then

1 $E_{\mathrm{e}}=E_\alpha=E_p$
2 $\mathrm{E}_{\mathrm{e}}>\mathrm{E}_\alpha>\mathrm{E}_{\mathrm{p}}$
3 $\mathrm{E}_\alpha>\mathrm{E}_{\mathrm{p}}>\mathrm{E}_{\mathrm{e}}$
4 $\mathrm{E}_{\mathrm{e}}>\mathrm{E}_{\mathrm{p}}>\mathrm{E}_\alpha$
Structure of Atom

238833 Given : The mass of electron is $9.11 \times 10^{-31} \mathrm{~kg}$. Planck constant is $6.626 \times 10^{-34} \mathrm{Js}$, the uncertainty involved in the measurement of velocity within a distance of $0.1 \AA \dot{\AA}$ is

1 $5.79 \times 10^5 \mathrm{~m} \mathrm{~s}^{-1}$
2 $5.79 \times 10^6 \mathrm{~m} \mathrm{~s}^{-1}$
3 $5.79 \times 10^7 \mathrm{~m} \mathrm{~s}^{-1}$
4 $5.79 \times 10^8 \mathrm{~m} \mathrm{~s}^{-1}$
Structure of Atom

238834 The uncertainty in momentum of an electron is $1 \times 10^{-5} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$. The uncertainty in its position will be $\left(\mathrm{h}=6.62 \times 10^{-34} \mathrm{~kg} \mathrm{~m}^2 / \mathrm{s}\right)$

1 $5.27 \times 10^{-30} \mathrm{~m}$
2 $1.05 \times 10^{-26} \mathrm{~m}$
3 $1.05 \times 10^{-28} \mathrm{~m}$
4 $5.25 \times 10^{-28} \mathrm{~m}$
Structure of Atom

238836 Uncertainty in position of an electron (mass = $9.1 \times 10^{-28}$ g) moving with a velocity of $3 \times 10^4$ $\mathrm{cm} / \mathrm{s}$ accurate upto $0.001 \%$ will be
(use $h /(4 \pi)$ in uncertainity expression where $h$ $=6.626 \times 10^{-27}$ erg second)

1 $5.76 \mathrm{~cm}$
2 $7.68 \mathrm{~cm}$
3 $1.93 \mathrm{~cm}$
4 $3.84 \mathrm{~cm}$
Structure of Atom

238837 If $\mathbf{E}_e, \mathbf{E}_\alpha$ and $\mathbf{E}_{\mathrm{p}}$ represent the kinetic energies of an electron, $\alpha$-particle and a proton respectively each moving with same de-Broglie wavelength then

1 $E_{\mathrm{e}}=E_\alpha=E_p$
2 $\mathrm{E}_{\mathrm{e}}>\mathrm{E}_\alpha>\mathrm{E}_{\mathrm{p}}$
3 $\mathrm{E}_\alpha>\mathrm{E}_{\mathrm{p}}>\mathrm{E}_{\mathrm{e}}$
4 $\mathrm{E}_{\mathrm{e}}>\mathrm{E}_{\mathrm{p}}>\mathrm{E}_\alpha$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here