03. Uncertainty Principle
Structure of Atom

238828 If uncertainty in position and velocity are equal, then uncertainty in momentum will be :

1 $\frac{1}{2} \sqrt{\frac{\mathrm{mh}}{\pi}}$
2 $\frac{1}{2} \sqrt{\frac{\mathrm{h}}{\pi \mathrm{m}}}$
3 $\frac{\mathrm{h}}{4 \pi \mathrm{m}}$
4 $\frac{\mathrm{mh}}{4 \pi}$
Structure of Atom

238829 Uncertainty in the position of an electron (mass $=9.1 \times 10^{-31} \mathrm{~kg}$ ) moving with a velocity $300 \mathrm{~ms}^{-1}$ accurate upon $0.001 \%$ will be $\left(\mathrm{h}=6.63 \times 10^{-34} \mathrm{~J}-\mathrm{s}\right)$

1 $19.2 \times 10^{-2} \mathrm{~m}$
2 $5.76 \times 10^{-2} \mathrm{~m}$
3 $1.92 \times 10^{-2} \mathrm{~m}$
4 $3.84 \times 10^{-2} \mathrm{~m}$
Structure of Atom

238831 If uncertainty in position and momentum are equal, then uncertainty in velocity is

1 $\frac{1}{\mathrm{~m}} \sqrt{\frac{\mathrm{h}}{\pi}}$
2 $\sqrt{\frac{\mathrm{h}}{\pi}}$
3 $\frac{1}{2 \mathrm{~m}} \sqrt{\frac{\mathrm{h}}{\pi}}$
4 $\sqrt{\frac{\mathrm{h}}{2 \pi}}$
Structure of Atom

238832 The measurement of the electron position is associated with uncertainty in momentum, which is equal to $1 \times 10^{-18} \mathrm{~g} \mathrm{~cm} \mathrm{~s}^{-1}$. The uncertainty in election velocity is (mass of an electron is $9 \times 10^{-28} g$ )

1 $1 \times 10^9 \mathrm{~cm} \mathrm{~s}^{-1}$
2 $1 \times 10^6 \mathrm{~cm} \mathrm{~s}^{-1}$
3 $1 \times 10^5 \mathrm{~cm} \mathrm{~s}^{-1}$
4 $1 \times 10^{11} \mathrm{~cm} \mathrm{~s}^{-1}$
Structure of Atom

238828 If uncertainty in position and velocity are equal, then uncertainty in momentum will be :

1 $\frac{1}{2} \sqrt{\frac{\mathrm{mh}}{\pi}}$
2 $\frac{1}{2} \sqrt{\frac{\mathrm{h}}{\pi \mathrm{m}}}$
3 $\frac{\mathrm{h}}{4 \pi \mathrm{m}}$
4 $\frac{\mathrm{mh}}{4 \pi}$
Structure of Atom

238829 Uncertainty in the position of an electron (mass $=9.1 \times 10^{-31} \mathrm{~kg}$ ) moving with a velocity $300 \mathrm{~ms}^{-1}$ accurate upon $0.001 \%$ will be $\left(\mathrm{h}=6.63 \times 10^{-34} \mathrm{~J}-\mathrm{s}\right)$

1 $19.2 \times 10^{-2} \mathrm{~m}$
2 $5.76 \times 10^{-2} \mathrm{~m}$
3 $1.92 \times 10^{-2} \mathrm{~m}$
4 $3.84 \times 10^{-2} \mathrm{~m}$
Structure of Atom

238831 If uncertainty in position and momentum are equal, then uncertainty in velocity is

1 $\frac{1}{\mathrm{~m}} \sqrt{\frac{\mathrm{h}}{\pi}}$
2 $\sqrt{\frac{\mathrm{h}}{\pi}}$
3 $\frac{1}{2 \mathrm{~m}} \sqrt{\frac{\mathrm{h}}{\pi}}$
4 $\sqrt{\frac{\mathrm{h}}{2 \pi}}$
Structure of Atom

238832 The measurement of the electron position is associated with uncertainty in momentum, which is equal to $1 \times 10^{-18} \mathrm{~g} \mathrm{~cm} \mathrm{~s}^{-1}$. The uncertainty in election velocity is (mass of an electron is $9 \times 10^{-28} g$ )

1 $1 \times 10^9 \mathrm{~cm} \mathrm{~s}^{-1}$
2 $1 \times 10^6 \mathrm{~cm} \mathrm{~s}^{-1}$
3 $1 \times 10^5 \mathrm{~cm} \mathrm{~s}^{-1}$
4 $1 \times 10^{11} \mathrm{~cm} \mathrm{~s}^{-1}$
Structure of Atom

238828 If uncertainty in position and velocity are equal, then uncertainty in momentum will be :

1 $\frac{1}{2} \sqrt{\frac{\mathrm{mh}}{\pi}}$
2 $\frac{1}{2} \sqrt{\frac{\mathrm{h}}{\pi \mathrm{m}}}$
3 $\frac{\mathrm{h}}{4 \pi \mathrm{m}}$
4 $\frac{\mathrm{mh}}{4 \pi}$
Structure of Atom

238829 Uncertainty in the position of an electron (mass $=9.1 \times 10^{-31} \mathrm{~kg}$ ) moving with a velocity $300 \mathrm{~ms}^{-1}$ accurate upon $0.001 \%$ will be $\left(\mathrm{h}=6.63 \times 10^{-34} \mathrm{~J}-\mathrm{s}\right)$

1 $19.2 \times 10^{-2} \mathrm{~m}$
2 $5.76 \times 10^{-2} \mathrm{~m}$
3 $1.92 \times 10^{-2} \mathrm{~m}$
4 $3.84 \times 10^{-2} \mathrm{~m}$
Structure of Atom

238831 If uncertainty in position and momentum are equal, then uncertainty in velocity is

1 $\frac{1}{\mathrm{~m}} \sqrt{\frac{\mathrm{h}}{\pi}}$
2 $\sqrt{\frac{\mathrm{h}}{\pi}}$
3 $\frac{1}{2 \mathrm{~m}} \sqrt{\frac{\mathrm{h}}{\pi}}$
4 $\sqrt{\frac{\mathrm{h}}{2 \pi}}$
Structure of Atom

238832 The measurement of the electron position is associated with uncertainty in momentum, which is equal to $1 \times 10^{-18} \mathrm{~g} \mathrm{~cm} \mathrm{~s}^{-1}$. The uncertainty in election velocity is (mass of an electron is $9 \times 10^{-28} g$ )

1 $1 \times 10^9 \mathrm{~cm} \mathrm{~s}^{-1}$
2 $1 \times 10^6 \mathrm{~cm} \mathrm{~s}^{-1}$
3 $1 \times 10^5 \mathrm{~cm} \mathrm{~s}^{-1}$
4 $1 \times 10^{11} \mathrm{~cm} \mathrm{~s}^{-1}$
Structure of Atom

238828 If uncertainty in position and velocity are equal, then uncertainty in momentum will be :

1 $\frac{1}{2} \sqrt{\frac{\mathrm{mh}}{\pi}}$
2 $\frac{1}{2} \sqrt{\frac{\mathrm{h}}{\pi \mathrm{m}}}$
3 $\frac{\mathrm{h}}{4 \pi \mathrm{m}}$
4 $\frac{\mathrm{mh}}{4 \pi}$
Structure of Atom

238829 Uncertainty in the position of an electron (mass $=9.1 \times 10^{-31} \mathrm{~kg}$ ) moving with a velocity $300 \mathrm{~ms}^{-1}$ accurate upon $0.001 \%$ will be $\left(\mathrm{h}=6.63 \times 10^{-34} \mathrm{~J}-\mathrm{s}\right)$

1 $19.2 \times 10^{-2} \mathrm{~m}$
2 $5.76 \times 10^{-2} \mathrm{~m}$
3 $1.92 \times 10^{-2} \mathrm{~m}$
4 $3.84 \times 10^{-2} \mathrm{~m}$
Structure of Atom

238831 If uncertainty in position and momentum are equal, then uncertainty in velocity is

1 $\frac{1}{\mathrm{~m}} \sqrt{\frac{\mathrm{h}}{\pi}}$
2 $\sqrt{\frac{\mathrm{h}}{\pi}}$
3 $\frac{1}{2 \mathrm{~m}} \sqrt{\frac{\mathrm{h}}{\pi}}$
4 $\sqrt{\frac{\mathrm{h}}{2 \pi}}$
Structure of Atom

238832 The measurement of the electron position is associated with uncertainty in momentum, which is equal to $1 \times 10^{-18} \mathrm{~g} \mathrm{~cm} \mathrm{~s}^{-1}$. The uncertainty in election velocity is (mass of an electron is $9 \times 10^{-28} g$ )

1 $1 \times 10^9 \mathrm{~cm} \mathrm{~s}^{-1}$
2 $1 \times 10^6 \mathrm{~cm} \mathrm{~s}^{-1}$
3 $1 \times 10^5 \mathrm{~cm} \mathrm{~s}^{-1}$
4 $1 \times 10^{11} \mathrm{~cm} \mathrm{~s}^{-1}$