03. Uncertainty Principle
Structure of Atom

238806 Both the position and exact velocity of an electron in an atom cannot be determined simultaneously and accurately. This is known as

1 De Broglie principle
2 Hamiltonian law
3 Heisenberg uncertainty principle
4 Bohr theory of hydrogen atom
Structure of Atom

238816 The measurement of the electron position if associated with an uncertainty in momentum, which is equal to $1 \times 10^{-18} \mathrm{~g} \mathrm{~cm} \mathrm{~s} \mathrm{~s}^{-1}$. The uncertainty in electron velocity is, (mass of an electron is $9 \times 10^{-28} \mathrm{~g}$ )

1 $1 \times 10^9 \mathrm{~cm} \mathrm{~s}^{-1}$
2 $1 \times 10^6 \mathrm{~cm} \mathrm{~s}^{-1}$
3 $1 \times 10^5 \mathrm{~cm} \mathrm{~s}^{-1}$
4 $1 \times 10^{11} \mathrm{~cm} \mathrm{~s}^{-1}$
Structure of Atom

238817 A stream of electrons from a heated filament was passed between two charged plates kept at a potential difference $V$ esu. If $e$ and $m$ are charge and mass of an electron, respectively, then the value of $h / \lambda$ (where, $\lambda$ is wavelength associated with electron wave) is given by

1 $2 \mathrm{meV}$
2 $\sqrt{\mathrm{meV}}$
3 $\sqrt{2 \mathrm{meV}}$
4 $\mathrm{meV}$
Structure of Atom

238835 The position of both, an electron and a helium atom is known within $1.0 \mathrm{~nm}$. Further the momentum of the electron is known within 5.0 $\times 10^{-26} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$. The minimum uncertainty in the measurement of the momentum of the helium stone is

1 $8.0 \times 10^{-26} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
2 $80 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
3 $50 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
4 $5.0 \times 10^{-26} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
Structure of Atom

238823 Heisenberg uncertainty principle can be explained as
#[Qdiff: Easy, QCat: Theory Based, examname: BCECE-2005
, JIPMER-2008
, JCECE - 2007]#

1 $\Delta \mathrm{x} \geq \frac{\Delta \mathrm{P} \times \mathrm{h}}{4 \pi}$
2 $\Delta \mathrm{x} \times \Delta \mathrm{P} \geq \frac{\mathrm{h}}{4 \pi}$
3 $\Delta \mathrm{x} \times \Delta \mathrm{P} \geq \frac{\mathrm{h}}{\pi}$
4 $\Delta \mathrm{P} \geq \frac{\pi \mathrm{h}}{\Delta \mathrm{x}}$
Structure of Atom

238806 Both the position and exact velocity of an electron in an atom cannot be determined simultaneously and accurately. This is known as

1 De Broglie principle
2 Hamiltonian law
3 Heisenberg uncertainty principle
4 Bohr theory of hydrogen atom
Structure of Atom

238816 The measurement of the electron position if associated with an uncertainty in momentum, which is equal to $1 \times 10^{-18} \mathrm{~g} \mathrm{~cm} \mathrm{~s} \mathrm{~s}^{-1}$. The uncertainty in electron velocity is, (mass of an electron is $9 \times 10^{-28} \mathrm{~g}$ )

1 $1 \times 10^9 \mathrm{~cm} \mathrm{~s}^{-1}$
2 $1 \times 10^6 \mathrm{~cm} \mathrm{~s}^{-1}$
3 $1 \times 10^5 \mathrm{~cm} \mathrm{~s}^{-1}$
4 $1 \times 10^{11} \mathrm{~cm} \mathrm{~s}^{-1}$
Structure of Atom

238817 A stream of electrons from a heated filament was passed between two charged plates kept at a potential difference $V$ esu. If $e$ and $m$ are charge and mass of an electron, respectively, then the value of $h / \lambda$ (where, $\lambda$ is wavelength associated with electron wave) is given by

1 $2 \mathrm{meV}$
2 $\sqrt{\mathrm{meV}}$
3 $\sqrt{2 \mathrm{meV}}$
4 $\mathrm{meV}$
Structure of Atom

238835 The position of both, an electron and a helium atom is known within $1.0 \mathrm{~nm}$. Further the momentum of the electron is known within 5.0 $\times 10^{-26} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$. The minimum uncertainty in the measurement of the momentum of the helium stone is

1 $8.0 \times 10^{-26} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
2 $80 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
3 $50 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
4 $5.0 \times 10^{-26} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
Structure of Atom

238823 Heisenberg uncertainty principle can be explained as
#[Qdiff: Easy, QCat: Theory Based, examname: BCECE-2005
, JIPMER-2008
, JCECE - 2007]#

1 $\Delta \mathrm{x} \geq \frac{\Delta \mathrm{P} \times \mathrm{h}}{4 \pi}$
2 $\Delta \mathrm{x} \times \Delta \mathrm{P} \geq \frac{\mathrm{h}}{4 \pi}$
3 $\Delta \mathrm{x} \times \Delta \mathrm{P} \geq \frac{\mathrm{h}}{\pi}$
4 $\Delta \mathrm{P} \geq \frac{\pi \mathrm{h}}{\Delta \mathrm{x}}$
Structure of Atom

238806 Both the position and exact velocity of an electron in an atom cannot be determined simultaneously and accurately. This is known as

1 De Broglie principle
2 Hamiltonian law
3 Heisenberg uncertainty principle
4 Bohr theory of hydrogen atom
Structure of Atom

238816 The measurement of the electron position if associated with an uncertainty in momentum, which is equal to $1 \times 10^{-18} \mathrm{~g} \mathrm{~cm} \mathrm{~s} \mathrm{~s}^{-1}$. The uncertainty in electron velocity is, (mass of an electron is $9 \times 10^{-28} \mathrm{~g}$ )

1 $1 \times 10^9 \mathrm{~cm} \mathrm{~s}^{-1}$
2 $1 \times 10^6 \mathrm{~cm} \mathrm{~s}^{-1}$
3 $1 \times 10^5 \mathrm{~cm} \mathrm{~s}^{-1}$
4 $1 \times 10^{11} \mathrm{~cm} \mathrm{~s}^{-1}$
Structure of Atom

238817 A stream of electrons from a heated filament was passed between two charged plates kept at a potential difference $V$ esu. If $e$ and $m$ are charge and mass of an electron, respectively, then the value of $h / \lambda$ (where, $\lambda$ is wavelength associated with electron wave) is given by

1 $2 \mathrm{meV}$
2 $\sqrt{\mathrm{meV}}$
3 $\sqrt{2 \mathrm{meV}}$
4 $\mathrm{meV}$
Structure of Atom

238835 The position of both, an electron and a helium atom is known within $1.0 \mathrm{~nm}$. Further the momentum of the electron is known within 5.0 $\times 10^{-26} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$. The minimum uncertainty in the measurement of the momentum of the helium stone is

1 $8.0 \times 10^{-26} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
2 $80 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
3 $50 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
4 $5.0 \times 10^{-26} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
Structure of Atom

238823 Heisenberg uncertainty principle can be explained as
#[Qdiff: Easy, QCat: Theory Based, examname: BCECE-2005
, JIPMER-2008
, JCECE - 2007]#

1 $\Delta \mathrm{x} \geq \frac{\Delta \mathrm{P} \times \mathrm{h}}{4 \pi}$
2 $\Delta \mathrm{x} \times \Delta \mathrm{P} \geq \frac{\mathrm{h}}{4 \pi}$
3 $\Delta \mathrm{x} \times \Delta \mathrm{P} \geq \frac{\mathrm{h}}{\pi}$
4 $\Delta \mathrm{P} \geq \frac{\pi \mathrm{h}}{\Delta \mathrm{x}}$
Structure of Atom

238806 Both the position and exact velocity of an electron in an atom cannot be determined simultaneously and accurately. This is known as

1 De Broglie principle
2 Hamiltonian law
3 Heisenberg uncertainty principle
4 Bohr theory of hydrogen atom
Structure of Atom

238816 The measurement of the electron position if associated with an uncertainty in momentum, which is equal to $1 \times 10^{-18} \mathrm{~g} \mathrm{~cm} \mathrm{~s} \mathrm{~s}^{-1}$. The uncertainty in electron velocity is, (mass of an electron is $9 \times 10^{-28} \mathrm{~g}$ )

1 $1 \times 10^9 \mathrm{~cm} \mathrm{~s}^{-1}$
2 $1 \times 10^6 \mathrm{~cm} \mathrm{~s}^{-1}$
3 $1 \times 10^5 \mathrm{~cm} \mathrm{~s}^{-1}$
4 $1 \times 10^{11} \mathrm{~cm} \mathrm{~s}^{-1}$
Structure of Atom

238817 A stream of electrons from a heated filament was passed between two charged plates kept at a potential difference $V$ esu. If $e$ and $m$ are charge and mass of an electron, respectively, then the value of $h / \lambda$ (where, $\lambda$ is wavelength associated with electron wave) is given by

1 $2 \mathrm{meV}$
2 $\sqrt{\mathrm{meV}}$
3 $\sqrt{2 \mathrm{meV}}$
4 $\mathrm{meV}$
Structure of Atom

238835 The position of both, an electron and a helium atom is known within $1.0 \mathrm{~nm}$. Further the momentum of the electron is known within 5.0 $\times 10^{-26} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$. The minimum uncertainty in the measurement of the momentum of the helium stone is

1 $8.0 \times 10^{-26} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
2 $80 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
3 $50 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
4 $5.0 \times 10^{-26} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
Structure of Atom

238823 Heisenberg uncertainty principle can be explained as
#[Qdiff: Easy, QCat: Theory Based, examname: BCECE-2005
, JIPMER-2008
, JCECE - 2007]#

1 $\Delta \mathrm{x} \geq \frac{\Delta \mathrm{P} \times \mathrm{h}}{4 \pi}$
2 $\Delta \mathrm{x} \times \Delta \mathrm{P} \geq \frac{\mathrm{h}}{4 \pi}$
3 $\Delta \mathrm{x} \times \Delta \mathrm{P} \geq \frac{\mathrm{h}}{\pi}$
4 $\Delta \mathrm{P} \geq \frac{\pi \mathrm{h}}{\Delta \mathrm{x}}$
Structure of Atom

238806 Both the position and exact velocity of an electron in an atom cannot be determined simultaneously and accurately. This is known as

1 De Broglie principle
2 Hamiltonian law
3 Heisenberg uncertainty principle
4 Bohr theory of hydrogen atom
Structure of Atom

238816 The measurement of the electron position if associated with an uncertainty in momentum, which is equal to $1 \times 10^{-18} \mathrm{~g} \mathrm{~cm} \mathrm{~s} \mathrm{~s}^{-1}$. The uncertainty in electron velocity is, (mass of an electron is $9 \times 10^{-28} \mathrm{~g}$ )

1 $1 \times 10^9 \mathrm{~cm} \mathrm{~s}^{-1}$
2 $1 \times 10^6 \mathrm{~cm} \mathrm{~s}^{-1}$
3 $1 \times 10^5 \mathrm{~cm} \mathrm{~s}^{-1}$
4 $1 \times 10^{11} \mathrm{~cm} \mathrm{~s}^{-1}$
Structure of Atom

238817 A stream of electrons from a heated filament was passed between two charged plates kept at a potential difference $V$ esu. If $e$ and $m$ are charge and mass of an electron, respectively, then the value of $h / \lambda$ (where, $\lambda$ is wavelength associated with electron wave) is given by

1 $2 \mathrm{meV}$
2 $\sqrt{\mathrm{meV}}$
3 $\sqrt{2 \mathrm{meV}}$
4 $\mathrm{meV}$
Structure of Atom

238835 The position of both, an electron and a helium atom is known within $1.0 \mathrm{~nm}$. Further the momentum of the electron is known within 5.0 $\times 10^{-26} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$. The minimum uncertainty in the measurement of the momentum of the helium stone is

1 $8.0 \times 10^{-26} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
2 $80 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
3 $50 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
4 $5.0 \times 10^{-26} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
Structure of Atom

238823 Heisenberg uncertainty principle can be explained as
#[Qdiff: Easy, QCat: Theory Based, examname: BCECE-2005
, JIPMER-2008
, JCECE - 2007]#

1 $\Delta \mathrm{x} \geq \frac{\Delta \mathrm{P} \times \mathrm{h}}{4 \pi}$
2 $\Delta \mathrm{x} \times \Delta \mathrm{P} \geq \frac{\mathrm{h}}{4 \pi}$
3 $\Delta \mathrm{x} \times \Delta \mathrm{P} \geq \frac{\mathrm{h}}{\pi}$
4 $\Delta \mathrm{P} \geq \frac{\pi \mathrm{h}}{\Delta \mathrm{x}}$