03. Uncertainty Principle
Structure of Atom

238806 Both the position and exact velocity of an electron in an atom cannot be determined simultaneously and accurately. This is known as

1 De Broglie principle
2 Hamiltonian law
3 Heisenberg uncertainty principle
4 Bohr theory of hydrogen atom
Structure of Atom

238816 The measurement of the electron position if associated with an uncertainty in momentum, which is equal to $1 \times 10^{-18} \mathrm{~g} \mathrm{~cm} \mathrm{~s} \mathrm{~s}^{-1}$. The uncertainty in electron velocity is, (mass of an electron is $9 \times 10^{-28} \mathrm{~g}$ )

1 $1 \times 10^9 \mathrm{~cm} \mathrm{~s}^{-1}$
2 $1 \times 10^6 \mathrm{~cm} \mathrm{~s}^{-1}$
3 $1 \times 10^5 \mathrm{~cm} \mathrm{~s}^{-1}$
4 $1 \times 10^{11} \mathrm{~cm} \mathrm{~s}^{-1}$
Structure of Atom

238817 A stream of electrons from a heated filament was passed between two charged plates kept at a potential difference $V$ esu. If $e$ and $m$ are charge and mass of an electron, respectively, then the value of $h / \lambda$ (where, $\lambda$ is wavelength associated with electron wave) is given by

1 $2 \mathrm{meV}$
2 $\sqrt{\mathrm{meV}}$
3 $\sqrt{2 \mathrm{meV}}$
4 $\mathrm{meV}$
Structure of Atom

238835 The position of both, an electron and a helium atom is known within $1.0 \mathrm{~nm}$. Further the momentum of the electron is known within 5.0 $\times 10^{-26} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$. The minimum uncertainty in the measurement of the momentum of the helium stone is

1 $8.0 \times 10^{-26} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
2 $80 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
3 $50 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
4 $5.0 \times 10^{-26} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
Structure of Atom

238823 Heisenberg uncertainty principle can be explained as
#[Qdiff: Easy, QCat: Theory Based, examname: BCECE-2005
, JIPMER-2008
, JCECE - 2007]#

1 $\Delta \mathrm{x} \geq \frac{\Delta \mathrm{P} \times \mathrm{h}}{4 \pi}$
2 $\Delta \mathrm{x} \times \Delta \mathrm{P} \geq \frac{\mathrm{h}}{4 \pi}$
3 $\Delta \mathrm{x} \times \Delta \mathrm{P} \geq \frac{\mathrm{h}}{\pi}$
4 $\Delta \mathrm{P} \geq \frac{\pi \mathrm{h}}{\Delta \mathrm{x}}$
Structure of Atom

238806 Both the position and exact velocity of an electron in an atom cannot be determined simultaneously and accurately. This is known as

1 De Broglie principle
2 Hamiltonian law
3 Heisenberg uncertainty principle
4 Bohr theory of hydrogen atom
Structure of Atom

238816 The measurement of the electron position if associated with an uncertainty in momentum, which is equal to $1 \times 10^{-18} \mathrm{~g} \mathrm{~cm} \mathrm{~s} \mathrm{~s}^{-1}$. The uncertainty in electron velocity is, (mass of an electron is $9 \times 10^{-28} \mathrm{~g}$ )

1 $1 \times 10^9 \mathrm{~cm} \mathrm{~s}^{-1}$
2 $1 \times 10^6 \mathrm{~cm} \mathrm{~s}^{-1}$
3 $1 \times 10^5 \mathrm{~cm} \mathrm{~s}^{-1}$
4 $1 \times 10^{11} \mathrm{~cm} \mathrm{~s}^{-1}$
Structure of Atom

238817 A stream of electrons from a heated filament was passed between two charged plates kept at a potential difference $V$ esu. If $e$ and $m$ are charge and mass of an electron, respectively, then the value of $h / \lambda$ (where, $\lambda$ is wavelength associated with electron wave) is given by

1 $2 \mathrm{meV}$
2 $\sqrt{\mathrm{meV}}$
3 $\sqrt{2 \mathrm{meV}}$
4 $\mathrm{meV}$
Structure of Atom

238835 The position of both, an electron and a helium atom is known within $1.0 \mathrm{~nm}$. Further the momentum of the electron is known within 5.0 $\times 10^{-26} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$. The minimum uncertainty in the measurement of the momentum of the helium stone is

1 $8.0 \times 10^{-26} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
2 $80 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
3 $50 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
4 $5.0 \times 10^{-26} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
Structure of Atom

238823 Heisenberg uncertainty principle can be explained as
#[Qdiff: Easy, QCat: Theory Based, examname: BCECE-2005
, JIPMER-2008
, JCECE - 2007]#

1 $\Delta \mathrm{x} \geq \frac{\Delta \mathrm{P} \times \mathrm{h}}{4 \pi}$
2 $\Delta \mathrm{x} \times \Delta \mathrm{P} \geq \frac{\mathrm{h}}{4 \pi}$
3 $\Delta \mathrm{x} \times \Delta \mathrm{P} \geq \frac{\mathrm{h}}{\pi}$
4 $\Delta \mathrm{P} \geq \frac{\pi \mathrm{h}}{\Delta \mathrm{x}}$
Structure of Atom

238806 Both the position and exact velocity of an electron in an atom cannot be determined simultaneously and accurately. This is known as

1 De Broglie principle
2 Hamiltonian law
3 Heisenberg uncertainty principle
4 Bohr theory of hydrogen atom
Structure of Atom

238816 The measurement of the electron position if associated with an uncertainty in momentum, which is equal to $1 \times 10^{-18} \mathrm{~g} \mathrm{~cm} \mathrm{~s} \mathrm{~s}^{-1}$. The uncertainty in electron velocity is, (mass of an electron is $9 \times 10^{-28} \mathrm{~g}$ )

1 $1 \times 10^9 \mathrm{~cm} \mathrm{~s}^{-1}$
2 $1 \times 10^6 \mathrm{~cm} \mathrm{~s}^{-1}$
3 $1 \times 10^5 \mathrm{~cm} \mathrm{~s}^{-1}$
4 $1 \times 10^{11} \mathrm{~cm} \mathrm{~s}^{-1}$
Structure of Atom

238817 A stream of electrons from a heated filament was passed between two charged plates kept at a potential difference $V$ esu. If $e$ and $m$ are charge and mass of an electron, respectively, then the value of $h / \lambda$ (where, $\lambda$ is wavelength associated with electron wave) is given by

1 $2 \mathrm{meV}$
2 $\sqrt{\mathrm{meV}}$
3 $\sqrt{2 \mathrm{meV}}$
4 $\mathrm{meV}$
Structure of Atom

238835 The position of both, an electron and a helium atom is known within $1.0 \mathrm{~nm}$. Further the momentum of the electron is known within 5.0 $\times 10^{-26} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$. The minimum uncertainty in the measurement of the momentum of the helium stone is

1 $8.0 \times 10^{-26} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
2 $80 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
3 $50 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
4 $5.0 \times 10^{-26} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
Structure of Atom

238823 Heisenberg uncertainty principle can be explained as
#[Qdiff: Easy, QCat: Theory Based, examname: BCECE-2005
, JIPMER-2008
, JCECE - 2007]#

1 $\Delta \mathrm{x} \geq \frac{\Delta \mathrm{P} \times \mathrm{h}}{4 \pi}$
2 $\Delta \mathrm{x} \times \Delta \mathrm{P} \geq \frac{\mathrm{h}}{4 \pi}$
3 $\Delta \mathrm{x} \times \Delta \mathrm{P} \geq \frac{\mathrm{h}}{\pi}$
4 $\Delta \mathrm{P} \geq \frac{\pi \mathrm{h}}{\Delta \mathrm{x}}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Structure of Atom

238806 Both the position and exact velocity of an electron in an atom cannot be determined simultaneously and accurately. This is known as

1 De Broglie principle
2 Hamiltonian law
3 Heisenberg uncertainty principle
4 Bohr theory of hydrogen atom
Structure of Atom

238816 The measurement of the electron position if associated with an uncertainty in momentum, which is equal to $1 \times 10^{-18} \mathrm{~g} \mathrm{~cm} \mathrm{~s} \mathrm{~s}^{-1}$. The uncertainty in electron velocity is, (mass of an electron is $9 \times 10^{-28} \mathrm{~g}$ )

1 $1 \times 10^9 \mathrm{~cm} \mathrm{~s}^{-1}$
2 $1 \times 10^6 \mathrm{~cm} \mathrm{~s}^{-1}$
3 $1 \times 10^5 \mathrm{~cm} \mathrm{~s}^{-1}$
4 $1 \times 10^{11} \mathrm{~cm} \mathrm{~s}^{-1}$
Structure of Atom

238817 A stream of electrons from a heated filament was passed between two charged plates kept at a potential difference $V$ esu. If $e$ and $m$ are charge and mass of an electron, respectively, then the value of $h / \lambda$ (where, $\lambda$ is wavelength associated with electron wave) is given by

1 $2 \mathrm{meV}$
2 $\sqrt{\mathrm{meV}}$
3 $\sqrt{2 \mathrm{meV}}$
4 $\mathrm{meV}$
Structure of Atom

238835 The position of both, an electron and a helium atom is known within $1.0 \mathrm{~nm}$. Further the momentum of the electron is known within 5.0 $\times 10^{-26} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$. The minimum uncertainty in the measurement of the momentum of the helium stone is

1 $8.0 \times 10^{-26} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
2 $80 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
3 $50 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
4 $5.0 \times 10^{-26} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
Structure of Atom

238823 Heisenberg uncertainty principle can be explained as
#[Qdiff: Easy, QCat: Theory Based, examname: BCECE-2005
, JIPMER-2008
, JCECE - 2007]#

1 $\Delta \mathrm{x} \geq \frac{\Delta \mathrm{P} \times \mathrm{h}}{4 \pi}$
2 $\Delta \mathrm{x} \times \Delta \mathrm{P} \geq \frac{\mathrm{h}}{4 \pi}$
3 $\Delta \mathrm{x} \times \Delta \mathrm{P} \geq \frac{\mathrm{h}}{\pi}$
4 $\Delta \mathrm{P} \geq \frac{\pi \mathrm{h}}{\Delta \mathrm{x}}$
Structure of Atom

238806 Both the position and exact velocity of an electron in an atom cannot be determined simultaneously and accurately. This is known as

1 De Broglie principle
2 Hamiltonian law
3 Heisenberg uncertainty principle
4 Bohr theory of hydrogen atom
Structure of Atom

238816 The measurement of the electron position if associated with an uncertainty in momentum, which is equal to $1 \times 10^{-18} \mathrm{~g} \mathrm{~cm} \mathrm{~s} \mathrm{~s}^{-1}$. The uncertainty in electron velocity is, (mass of an electron is $9 \times 10^{-28} \mathrm{~g}$ )

1 $1 \times 10^9 \mathrm{~cm} \mathrm{~s}^{-1}$
2 $1 \times 10^6 \mathrm{~cm} \mathrm{~s}^{-1}$
3 $1 \times 10^5 \mathrm{~cm} \mathrm{~s}^{-1}$
4 $1 \times 10^{11} \mathrm{~cm} \mathrm{~s}^{-1}$
Structure of Atom

238817 A stream of electrons from a heated filament was passed between two charged plates kept at a potential difference $V$ esu. If $e$ and $m$ are charge and mass of an electron, respectively, then the value of $h / \lambda$ (where, $\lambda$ is wavelength associated with electron wave) is given by

1 $2 \mathrm{meV}$
2 $\sqrt{\mathrm{meV}}$
3 $\sqrt{2 \mathrm{meV}}$
4 $\mathrm{meV}$
Structure of Atom

238835 The position of both, an electron and a helium atom is known within $1.0 \mathrm{~nm}$. Further the momentum of the electron is known within 5.0 $\times 10^{-26} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$. The minimum uncertainty in the measurement of the momentum of the helium stone is

1 $8.0 \times 10^{-26} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
2 $80 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
3 $50 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
4 $5.0 \times 10^{-26} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
Structure of Atom

238823 Heisenberg uncertainty principle can be explained as
#[Qdiff: Easy, QCat: Theory Based, examname: BCECE-2005
, JIPMER-2008
, JCECE - 2007]#

1 $\Delta \mathrm{x} \geq \frac{\Delta \mathrm{P} \times \mathrm{h}}{4 \pi}$
2 $\Delta \mathrm{x} \times \Delta \mathrm{P} \geq \frac{\mathrm{h}}{4 \pi}$
3 $\Delta \mathrm{x} \times \Delta \mathrm{P} \geq \frac{\mathrm{h}}{\pi}$
4 $\Delta \mathrm{P} \geq \frac{\pi \mathrm{h}}{\Delta \mathrm{x}}$