Forces in Mechanism
LAWS OF MOTION (ADDITIONAL)

371868 In the arrangement shown in figure \(a_{1}, a_{2}, a_{3}\), and \(a_{4}\) are the accelerations of masses \(m_{1}, m_{2}\), \(m_{3}\), and \(m_{4}\) respectively. Which of the following relation is true for this arrangement?

1 \(4 \mathrm{a}_{1}+2 \mathrm{a}_{2}+\mathrm{a}_{3}+\mathrm{a}_{4}=0\)
2 \(\mathrm{a}_{1}+4 \mathrm{a}_{2}+3 \mathrm{a}_{3}+\mathrm{a}_{4}=0\)
3 \(\mathrm{a}_{1}+4 \mathrm{a}_{2}+3 \mathrm{a}_{3}+2 \mathrm{a}_{4}=0\)
4 \(2 \mathrm{a}_{1}+2 \mathrm{a}_{2}+3 \mathrm{a}_{3}+\mathrm{a}_{4}=0\)
LAWS OF MOTION (ADDITIONAL)

371869 A cylinder of mass \(12 \mathrm{~kg}\) is sliding on plane with an initial velocity \(20 \mathrm{~ms}^{-1}\). If the coefficient of friction between the surface and the cylinder is 0.5 , before stopping. The cylinder describes a distance of

1 \(40 \mathrm{~m}\)
2 \(5 \mathrm{~m}\)
3 \(20 \mathrm{~m}\)
4 \(10 \mathrm{~m}\)
LAWS OF MOTION (ADDITIONAL)

371870 Two masses \(m\) and \(2 m\) are hang from a frictionless. Weightless ideal pulley as shown below:

The upward acceleration of the mass \(m\) is

1 \(\frac{g}{8}\)
2 \(\frac{g}{4}\)
3 \(\frac{g}{3}\)
4 \(\frac{\mathrm{g}}{2}\)
LAWS OF MOTION (ADDITIONAL)

371871 Two masses \(\mathrm{m}_{1}=5 \mathrm{~kg}\) and \(\mathrm{m}_{2}=4.8 \mathrm{~kg}\) tied to a string are hanging over a light frictionless pulley. What is the acceleration of the masses. When left free to move? \(\left(\mathrm{g}=9.8 \mathrm{~m} . \mathrm{s}^{-2}\right)\)

1 \(0.2 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
2 \(9.8 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
3 \(5.0 \mathrm{~m} . \mathrm{s}^{-2}\)
4 \(4.8 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
LAWS OF MOTION (ADDITIONAL)

371868 In the arrangement shown in figure \(a_{1}, a_{2}, a_{3}\), and \(a_{4}\) are the accelerations of masses \(m_{1}, m_{2}\), \(m_{3}\), and \(m_{4}\) respectively. Which of the following relation is true for this arrangement?

1 \(4 \mathrm{a}_{1}+2 \mathrm{a}_{2}+\mathrm{a}_{3}+\mathrm{a}_{4}=0\)
2 \(\mathrm{a}_{1}+4 \mathrm{a}_{2}+3 \mathrm{a}_{3}+\mathrm{a}_{4}=0\)
3 \(\mathrm{a}_{1}+4 \mathrm{a}_{2}+3 \mathrm{a}_{3}+2 \mathrm{a}_{4}=0\)
4 \(2 \mathrm{a}_{1}+2 \mathrm{a}_{2}+3 \mathrm{a}_{3}+\mathrm{a}_{4}=0\)
LAWS OF MOTION (ADDITIONAL)

371869 A cylinder of mass \(12 \mathrm{~kg}\) is sliding on plane with an initial velocity \(20 \mathrm{~ms}^{-1}\). If the coefficient of friction between the surface and the cylinder is 0.5 , before stopping. The cylinder describes a distance of

1 \(40 \mathrm{~m}\)
2 \(5 \mathrm{~m}\)
3 \(20 \mathrm{~m}\)
4 \(10 \mathrm{~m}\)
LAWS OF MOTION (ADDITIONAL)

371870 Two masses \(m\) and \(2 m\) are hang from a frictionless. Weightless ideal pulley as shown below:

The upward acceleration of the mass \(m\) is

1 \(\frac{g}{8}\)
2 \(\frac{g}{4}\)
3 \(\frac{g}{3}\)
4 \(\frac{\mathrm{g}}{2}\)
LAWS OF MOTION (ADDITIONAL)

371871 Two masses \(\mathrm{m}_{1}=5 \mathrm{~kg}\) and \(\mathrm{m}_{2}=4.8 \mathrm{~kg}\) tied to a string are hanging over a light frictionless pulley. What is the acceleration of the masses. When left free to move? \(\left(\mathrm{g}=9.8 \mathrm{~m} . \mathrm{s}^{-2}\right)\)

1 \(0.2 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
2 \(9.8 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
3 \(5.0 \mathrm{~m} . \mathrm{s}^{-2}\)
4 \(4.8 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
LAWS OF MOTION (ADDITIONAL)

371868 In the arrangement shown in figure \(a_{1}, a_{2}, a_{3}\), and \(a_{4}\) are the accelerations of masses \(m_{1}, m_{2}\), \(m_{3}\), and \(m_{4}\) respectively. Which of the following relation is true for this arrangement?

1 \(4 \mathrm{a}_{1}+2 \mathrm{a}_{2}+\mathrm{a}_{3}+\mathrm{a}_{4}=0\)
2 \(\mathrm{a}_{1}+4 \mathrm{a}_{2}+3 \mathrm{a}_{3}+\mathrm{a}_{4}=0\)
3 \(\mathrm{a}_{1}+4 \mathrm{a}_{2}+3 \mathrm{a}_{3}+2 \mathrm{a}_{4}=0\)
4 \(2 \mathrm{a}_{1}+2 \mathrm{a}_{2}+3 \mathrm{a}_{3}+\mathrm{a}_{4}=0\)
LAWS OF MOTION (ADDITIONAL)

371869 A cylinder of mass \(12 \mathrm{~kg}\) is sliding on plane with an initial velocity \(20 \mathrm{~ms}^{-1}\). If the coefficient of friction between the surface and the cylinder is 0.5 , before stopping. The cylinder describes a distance of

1 \(40 \mathrm{~m}\)
2 \(5 \mathrm{~m}\)
3 \(20 \mathrm{~m}\)
4 \(10 \mathrm{~m}\)
LAWS OF MOTION (ADDITIONAL)

371870 Two masses \(m\) and \(2 m\) are hang from a frictionless. Weightless ideal pulley as shown below:

The upward acceleration of the mass \(m\) is

1 \(\frac{g}{8}\)
2 \(\frac{g}{4}\)
3 \(\frac{g}{3}\)
4 \(\frac{\mathrm{g}}{2}\)
LAWS OF MOTION (ADDITIONAL)

371871 Two masses \(\mathrm{m}_{1}=5 \mathrm{~kg}\) and \(\mathrm{m}_{2}=4.8 \mathrm{~kg}\) tied to a string are hanging over a light frictionless pulley. What is the acceleration of the masses. When left free to move? \(\left(\mathrm{g}=9.8 \mathrm{~m} . \mathrm{s}^{-2}\right)\)

1 \(0.2 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
2 \(9.8 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
3 \(5.0 \mathrm{~m} . \mathrm{s}^{-2}\)
4 \(4.8 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
LAWS OF MOTION (ADDITIONAL)

371868 In the arrangement shown in figure \(a_{1}, a_{2}, a_{3}\), and \(a_{4}\) are the accelerations of masses \(m_{1}, m_{2}\), \(m_{3}\), and \(m_{4}\) respectively. Which of the following relation is true for this arrangement?

1 \(4 \mathrm{a}_{1}+2 \mathrm{a}_{2}+\mathrm{a}_{3}+\mathrm{a}_{4}=0\)
2 \(\mathrm{a}_{1}+4 \mathrm{a}_{2}+3 \mathrm{a}_{3}+\mathrm{a}_{4}=0\)
3 \(\mathrm{a}_{1}+4 \mathrm{a}_{2}+3 \mathrm{a}_{3}+2 \mathrm{a}_{4}=0\)
4 \(2 \mathrm{a}_{1}+2 \mathrm{a}_{2}+3 \mathrm{a}_{3}+\mathrm{a}_{4}=0\)
LAWS OF MOTION (ADDITIONAL)

371869 A cylinder of mass \(12 \mathrm{~kg}\) is sliding on plane with an initial velocity \(20 \mathrm{~ms}^{-1}\). If the coefficient of friction between the surface and the cylinder is 0.5 , before stopping. The cylinder describes a distance of

1 \(40 \mathrm{~m}\)
2 \(5 \mathrm{~m}\)
3 \(20 \mathrm{~m}\)
4 \(10 \mathrm{~m}\)
LAWS OF MOTION (ADDITIONAL)

371870 Two masses \(m\) and \(2 m\) are hang from a frictionless. Weightless ideal pulley as shown below:

The upward acceleration of the mass \(m\) is

1 \(\frac{g}{8}\)
2 \(\frac{g}{4}\)
3 \(\frac{g}{3}\)
4 \(\frac{\mathrm{g}}{2}\)
LAWS OF MOTION (ADDITIONAL)

371871 Two masses \(\mathrm{m}_{1}=5 \mathrm{~kg}\) and \(\mathrm{m}_{2}=4.8 \mathrm{~kg}\) tied to a string are hanging over a light frictionless pulley. What is the acceleration of the masses. When left free to move? \(\left(\mathrm{g}=9.8 \mathrm{~m} . \mathrm{s}^{-2}\right)\)

1 \(0.2 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
2 \(9.8 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
3 \(5.0 \mathrm{~m} . \mathrm{s}^{-2}\)
4 \(4.8 \mathrm{~m} \cdot \mathrm{s}^{-2}\)