Newton's Law of Motion and It's Application
LAWS OF MOTION (ADDITIONAL)

371765 Consider a ship traveling due east along the equator with velocity \(v_{0}\). If southeastern wind blows at an angle of ' \(\phi\) ' to the equator with velocity ' \(v\) '. The wind velocity relative to the ship \(v^{\prime}\) and the angle between the equator and the wind direction in the reference frame fixed to the slip are

1 \(\mathrm{v}^{\prime}=\sqrt{\mathrm{v}_{0}^{2}+\mathrm{v}^{2}+2 \mathrm{v}_{0} \mathrm{v} \cos \phi}, \sin ^{-1}\left(\frac{\mathrm{v} \sin \phi}{\mathrm{v}^{\prime}}\right)\)
2 \(\mathrm{v}^{\prime}=\sqrt{\mathrm{v}_{0}^{2}+\mathrm{v}^{2}+2 \mathrm{vv}_{0} \sin \phi}, \cos ^{-1}\left(\frac{\mathrm{v} \cos \phi}{\mathrm{v}^{\prime}}\right)\)
3 \(\mathrm{v}^{\prime}=\sqrt{\mathrm{v}_{0}^{2}+\mathrm{v}^{2}-2 \mathrm{v}_{0} \mathrm{v} \cos \phi}, \sin ^{-1}\left(\frac{\mathrm{v}}{\mathrm{v}^{\prime}}\right)\)
4 \(\mathrm{v}^{\prime}=\mathrm{v}_{0}^{2}+\mathrm{v}^{2}-2 \mathrm{v}_{0} \mathrm{v} \cos \phi, \cos ^{-1}\left(\frac{\mathrm{v}}{\mathrm{v}^{\prime}}\right)\)
LAWS OF MOTION (ADDITIONAL)

371766 \(90 \mathrm{~N}\) mass is hung on a rope tied between two poles as shown in the figure. The tension \(T_{1}\) and \(T_{2}\) in the two parts of the rope are (in \(N\) ).

1 \(\frac{180}{\sqrt{3}+1} \cdot \frac{\sqrt{6}}{2}, \frac{180}{\sqrt{3}+1}\)
2 \(\frac{90}{\sqrt{3}+1} \cdot \frac{\sqrt{6}}{2}, \frac{180}{\sqrt{3}}\)
3 \(\frac{180}{\sqrt{3}+1} \cdot \frac{\sqrt{3}}{2}, \frac{90}{\sqrt{3}+1}\)
4 \(\frac{90}{\sqrt{3}+1} \cdot \frac{\sqrt{3}}{2}, \frac{90}{\sqrt{3}}\)
LAWS OF MOTION (ADDITIONAL)

371767 If a stone of mass \(0.05 \mathrm{~kg}\) is thrown out a window of a train moving at a constant speed of \(100 \mathrm{~km} / \mathrm{h}\) then magnitude of the net force acting on the stone is

1 \(0.5 \mathrm{~N}\)
2 zero
3 \(50 \mathrm{~N}\)
4 \(5 \mathrm{~N}\)
LAWS OF MOTION (ADDITIONAL)

371768 A lift moves vertically up with an acceleration a. Force exerted by a person of mass \(M\) on the floor of the lift is

1 \(\mathrm{Ma}\)
2 \(\mathrm{Mg}\)
3 \(\mathrm{M}(\mathrm{g}+\mathrm{a})\)
4 \(M(g-a)\)
LAWS OF MOTION (ADDITIONAL)

371769 Consider the following statements in the context of forjmulation of any law of Physics
I. explain the existing physical facts
II. no need of experimental verification
III. predict future results
Then, any formulated law of Physics, should be true with respect to:

1 I and II
2 II and III
3 I and III
4 I,II and III
LAWS OF MOTION (ADDITIONAL)

371765 Consider a ship traveling due east along the equator with velocity \(v_{0}\). If southeastern wind blows at an angle of ' \(\phi\) ' to the equator with velocity ' \(v\) '. The wind velocity relative to the ship \(v^{\prime}\) and the angle between the equator and the wind direction in the reference frame fixed to the slip are

1 \(\mathrm{v}^{\prime}=\sqrt{\mathrm{v}_{0}^{2}+\mathrm{v}^{2}+2 \mathrm{v}_{0} \mathrm{v} \cos \phi}, \sin ^{-1}\left(\frac{\mathrm{v} \sin \phi}{\mathrm{v}^{\prime}}\right)\)
2 \(\mathrm{v}^{\prime}=\sqrt{\mathrm{v}_{0}^{2}+\mathrm{v}^{2}+2 \mathrm{vv}_{0} \sin \phi}, \cos ^{-1}\left(\frac{\mathrm{v} \cos \phi}{\mathrm{v}^{\prime}}\right)\)
3 \(\mathrm{v}^{\prime}=\sqrt{\mathrm{v}_{0}^{2}+\mathrm{v}^{2}-2 \mathrm{v}_{0} \mathrm{v} \cos \phi}, \sin ^{-1}\left(\frac{\mathrm{v}}{\mathrm{v}^{\prime}}\right)\)
4 \(\mathrm{v}^{\prime}=\mathrm{v}_{0}^{2}+\mathrm{v}^{2}-2 \mathrm{v}_{0} \mathrm{v} \cos \phi, \cos ^{-1}\left(\frac{\mathrm{v}}{\mathrm{v}^{\prime}}\right)\)
LAWS OF MOTION (ADDITIONAL)

371766 \(90 \mathrm{~N}\) mass is hung on a rope tied between two poles as shown in the figure. The tension \(T_{1}\) and \(T_{2}\) in the two parts of the rope are (in \(N\) ).

1 \(\frac{180}{\sqrt{3}+1} \cdot \frac{\sqrt{6}}{2}, \frac{180}{\sqrt{3}+1}\)
2 \(\frac{90}{\sqrt{3}+1} \cdot \frac{\sqrt{6}}{2}, \frac{180}{\sqrt{3}}\)
3 \(\frac{180}{\sqrt{3}+1} \cdot \frac{\sqrt{3}}{2}, \frac{90}{\sqrt{3}+1}\)
4 \(\frac{90}{\sqrt{3}+1} \cdot \frac{\sqrt{3}}{2}, \frac{90}{\sqrt{3}}\)
LAWS OF MOTION (ADDITIONAL)

371767 If a stone of mass \(0.05 \mathrm{~kg}\) is thrown out a window of a train moving at a constant speed of \(100 \mathrm{~km} / \mathrm{h}\) then magnitude of the net force acting on the stone is

1 \(0.5 \mathrm{~N}\)
2 zero
3 \(50 \mathrm{~N}\)
4 \(5 \mathrm{~N}\)
LAWS OF MOTION (ADDITIONAL)

371768 A lift moves vertically up with an acceleration a. Force exerted by a person of mass \(M\) on the floor of the lift is

1 \(\mathrm{Ma}\)
2 \(\mathrm{Mg}\)
3 \(\mathrm{M}(\mathrm{g}+\mathrm{a})\)
4 \(M(g-a)\)
LAWS OF MOTION (ADDITIONAL)

371769 Consider the following statements in the context of forjmulation of any law of Physics
I. explain the existing physical facts
II. no need of experimental verification
III. predict future results
Then, any formulated law of Physics, should be true with respect to:

1 I and II
2 II and III
3 I and III
4 I,II and III
LAWS OF MOTION (ADDITIONAL)

371765 Consider a ship traveling due east along the equator with velocity \(v_{0}\). If southeastern wind blows at an angle of ' \(\phi\) ' to the equator with velocity ' \(v\) '. The wind velocity relative to the ship \(v^{\prime}\) and the angle between the equator and the wind direction in the reference frame fixed to the slip are

1 \(\mathrm{v}^{\prime}=\sqrt{\mathrm{v}_{0}^{2}+\mathrm{v}^{2}+2 \mathrm{v}_{0} \mathrm{v} \cos \phi}, \sin ^{-1}\left(\frac{\mathrm{v} \sin \phi}{\mathrm{v}^{\prime}}\right)\)
2 \(\mathrm{v}^{\prime}=\sqrt{\mathrm{v}_{0}^{2}+\mathrm{v}^{2}+2 \mathrm{vv}_{0} \sin \phi}, \cos ^{-1}\left(\frac{\mathrm{v} \cos \phi}{\mathrm{v}^{\prime}}\right)\)
3 \(\mathrm{v}^{\prime}=\sqrt{\mathrm{v}_{0}^{2}+\mathrm{v}^{2}-2 \mathrm{v}_{0} \mathrm{v} \cos \phi}, \sin ^{-1}\left(\frac{\mathrm{v}}{\mathrm{v}^{\prime}}\right)\)
4 \(\mathrm{v}^{\prime}=\mathrm{v}_{0}^{2}+\mathrm{v}^{2}-2 \mathrm{v}_{0} \mathrm{v} \cos \phi, \cos ^{-1}\left(\frac{\mathrm{v}}{\mathrm{v}^{\prime}}\right)\)
LAWS OF MOTION (ADDITIONAL)

371766 \(90 \mathrm{~N}\) mass is hung on a rope tied between two poles as shown in the figure. The tension \(T_{1}\) and \(T_{2}\) in the two parts of the rope are (in \(N\) ).

1 \(\frac{180}{\sqrt{3}+1} \cdot \frac{\sqrt{6}}{2}, \frac{180}{\sqrt{3}+1}\)
2 \(\frac{90}{\sqrt{3}+1} \cdot \frac{\sqrt{6}}{2}, \frac{180}{\sqrt{3}}\)
3 \(\frac{180}{\sqrt{3}+1} \cdot \frac{\sqrt{3}}{2}, \frac{90}{\sqrt{3}+1}\)
4 \(\frac{90}{\sqrt{3}+1} \cdot \frac{\sqrt{3}}{2}, \frac{90}{\sqrt{3}}\)
LAWS OF MOTION (ADDITIONAL)

371767 If a stone of mass \(0.05 \mathrm{~kg}\) is thrown out a window of a train moving at a constant speed of \(100 \mathrm{~km} / \mathrm{h}\) then magnitude of the net force acting on the stone is

1 \(0.5 \mathrm{~N}\)
2 zero
3 \(50 \mathrm{~N}\)
4 \(5 \mathrm{~N}\)
LAWS OF MOTION (ADDITIONAL)

371768 A lift moves vertically up with an acceleration a. Force exerted by a person of mass \(M\) on the floor of the lift is

1 \(\mathrm{Ma}\)
2 \(\mathrm{Mg}\)
3 \(\mathrm{M}(\mathrm{g}+\mathrm{a})\)
4 \(M(g-a)\)
LAWS OF MOTION (ADDITIONAL)

371769 Consider the following statements in the context of forjmulation of any law of Physics
I. explain the existing physical facts
II. no need of experimental verification
III. predict future results
Then, any formulated law of Physics, should be true with respect to:

1 I and II
2 II and III
3 I and III
4 I,II and III
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
LAWS OF MOTION (ADDITIONAL)

371765 Consider a ship traveling due east along the equator with velocity \(v_{0}\). If southeastern wind blows at an angle of ' \(\phi\) ' to the equator with velocity ' \(v\) '. The wind velocity relative to the ship \(v^{\prime}\) and the angle between the equator and the wind direction in the reference frame fixed to the slip are

1 \(\mathrm{v}^{\prime}=\sqrt{\mathrm{v}_{0}^{2}+\mathrm{v}^{2}+2 \mathrm{v}_{0} \mathrm{v} \cos \phi}, \sin ^{-1}\left(\frac{\mathrm{v} \sin \phi}{\mathrm{v}^{\prime}}\right)\)
2 \(\mathrm{v}^{\prime}=\sqrt{\mathrm{v}_{0}^{2}+\mathrm{v}^{2}+2 \mathrm{vv}_{0} \sin \phi}, \cos ^{-1}\left(\frac{\mathrm{v} \cos \phi}{\mathrm{v}^{\prime}}\right)\)
3 \(\mathrm{v}^{\prime}=\sqrt{\mathrm{v}_{0}^{2}+\mathrm{v}^{2}-2 \mathrm{v}_{0} \mathrm{v} \cos \phi}, \sin ^{-1}\left(\frac{\mathrm{v}}{\mathrm{v}^{\prime}}\right)\)
4 \(\mathrm{v}^{\prime}=\mathrm{v}_{0}^{2}+\mathrm{v}^{2}-2 \mathrm{v}_{0} \mathrm{v} \cos \phi, \cos ^{-1}\left(\frac{\mathrm{v}}{\mathrm{v}^{\prime}}\right)\)
LAWS OF MOTION (ADDITIONAL)

371766 \(90 \mathrm{~N}\) mass is hung on a rope tied between two poles as shown in the figure. The tension \(T_{1}\) and \(T_{2}\) in the two parts of the rope are (in \(N\) ).

1 \(\frac{180}{\sqrt{3}+1} \cdot \frac{\sqrt{6}}{2}, \frac{180}{\sqrt{3}+1}\)
2 \(\frac{90}{\sqrt{3}+1} \cdot \frac{\sqrt{6}}{2}, \frac{180}{\sqrt{3}}\)
3 \(\frac{180}{\sqrt{3}+1} \cdot \frac{\sqrt{3}}{2}, \frac{90}{\sqrt{3}+1}\)
4 \(\frac{90}{\sqrt{3}+1} \cdot \frac{\sqrt{3}}{2}, \frac{90}{\sqrt{3}}\)
LAWS OF MOTION (ADDITIONAL)

371767 If a stone of mass \(0.05 \mathrm{~kg}\) is thrown out a window of a train moving at a constant speed of \(100 \mathrm{~km} / \mathrm{h}\) then magnitude of the net force acting on the stone is

1 \(0.5 \mathrm{~N}\)
2 zero
3 \(50 \mathrm{~N}\)
4 \(5 \mathrm{~N}\)
LAWS OF MOTION (ADDITIONAL)

371768 A lift moves vertically up with an acceleration a. Force exerted by a person of mass \(M\) on the floor of the lift is

1 \(\mathrm{Ma}\)
2 \(\mathrm{Mg}\)
3 \(\mathrm{M}(\mathrm{g}+\mathrm{a})\)
4 \(M(g-a)\)
LAWS OF MOTION (ADDITIONAL)

371769 Consider the following statements in the context of forjmulation of any law of Physics
I. explain the existing physical facts
II. no need of experimental verification
III. predict future results
Then, any formulated law of Physics, should be true with respect to:

1 I and II
2 II and III
3 I and III
4 I,II and III
LAWS OF MOTION (ADDITIONAL)

371765 Consider a ship traveling due east along the equator with velocity \(v_{0}\). If southeastern wind blows at an angle of ' \(\phi\) ' to the equator with velocity ' \(v\) '. The wind velocity relative to the ship \(v^{\prime}\) and the angle between the equator and the wind direction in the reference frame fixed to the slip are

1 \(\mathrm{v}^{\prime}=\sqrt{\mathrm{v}_{0}^{2}+\mathrm{v}^{2}+2 \mathrm{v}_{0} \mathrm{v} \cos \phi}, \sin ^{-1}\left(\frac{\mathrm{v} \sin \phi}{\mathrm{v}^{\prime}}\right)\)
2 \(\mathrm{v}^{\prime}=\sqrt{\mathrm{v}_{0}^{2}+\mathrm{v}^{2}+2 \mathrm{vv}_{0} \sin \phi}, \cos ^{-1}\left(\frac{\mathrm{v} \cos \phi}{\mathrm{v}^{\prime}}\right)\)
3 \(\mathrm{v}^{\prime}=\sqrt{\mathrm{v}_{0}^{2}+\mathrm{v}^{2}-2 \mathrm{v}_{0} \mathrm{v} \cos \phi}, \sin ^{-1}\left(\frac{\mathrm{v}}{\mathrm{v}^{\prime}}\right)\)
4 \(\mathrm{v}^{\prime}=\mathrm{v}_{0}^{2}+\mathrm{v}^{2}-2 \mathrm{v}_{0} \mathrm{v} \cos \phi, \cos ^{-1}\left(\frac{\mathrm{v}}{\mathrm{v}^{\prime}}\right)\)
LAWS OF MOTION (ADDITIONAL)

371766 \(90 \mathrm{~N}\) mass is hung on a rope tied between two poles as shown in the figure. The tension \(T_{1}\) and \(T_{2}\) in the two parts of the rope are (in \(N\) ).

1 \(\frac{180}{\sqrt{3}+1} \cdot \frac{\sqrt{6}}{2}, \frac{180}{\sqrt{3}+1}\)
2 \(\frac{90}{\sqrt{3}+1} \cdot \frac{\sqrt{6}}{2}, \frac{180}{\sqrt{3}}\)
3 \(\frac{180}{\sqrt{3}+1} \cdot \frac{\sqrt{3}}{2}, \frac{90}{\sqrt{3}+1}\)
4 \(\frac{90}{\sqrt{3}+1} \cdot \frac{\sqrt{3}}{2}, \frac{90}{\sqrt{3}}\)
LAWS OF MOTION (ADDITIONAL)

371767 If a stone of mass \(0.05 \mathrm{~kg}\) is thrown out a window of a train moving at a constant speed of \(100 \mathrm{~km} / \mathrm{h}\) then magnitude of the net force acting on the stone is

1 \(0.5 \mathrm{~N}\)
2 zero
3 \(50 \mathrm{~N}\)
4 \(5 \mathrm{~N}\)
LAWS OF MOTION (ADDITIONAL)

371768 A lift moves vertically up with an acceleration a. Force exerted by a person of mass \(M\) on the floor of the lift is

1 \(\mathrm{Ma}\)
2 \(\mathrm{Mg}\)
3 \(\mathrm{M}(\mathrm{g}+\mathrm{a})\)
4 \(M(g-a)\)
LAWS OF MOTION (ADDITIONAL)

371769 Consider the following statements in the context of forjmulation of any law of Physics
I. explain the existing physical facts
II. no need of experimental verification
III. predict future results
Then, any formulated law of Physics, should be true with respect to:

1 I and II
2 II and III
3 I and III
4 I,II and III