Newton's Law of Motion and It's Application
LAWS OF MOTION (ADDITIONAL)

371740 A ship of mass \(2 \times 10^{7} \mathrm{~kg}\) initially at rest is pulled by a force of \(5 \times 10^{5} \mathrm{~N}\) through a distance of \(2 \mathrm{~m}\). Assuming that the resistance due to water is negligible, the speed of the ship is

1 \(2 \mathrm{~ms}^{-1}\)
2 \(0.01 \mathrm{~ms}^{-1}\)
3 \(0.1 \mathrm{~ms}^{-1}\)
4 \(1 \mathrm{~ms}^{-1}\)
5 \(5 \mathrm{~ms}^{-1}\)
LAWS OF MOTION (ADDITIONAL)

371741 A force of \((2 \hat{i}+3 \hat{j}) N\) acts on a body of mass 1
\(\mathrm{kg}\) which is at rest initially. The acceleration of the body is

1 \((4 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}) \mathrm{ms}^{-2}\)
2 \((2 \hat{i}+3 \hat{j}) \mathrm{ms}^{-2}\)
3 \((3 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}) \mathrm{ms}^{-2}\)
4 \((6 \hat{i}+2 \hat{j}) \mathrm{ms}^{-2}\)
5 \((\hat{i}+\hat{j}) \mathrm{ms}^{-2}\)
LAWS OF MOTION (ADDITIONAL)

371742 A constant horizontal force \(\vec{F}\) of \(30 \mathbf{N}\) is applied to block \(A\) of mass \(10 \mathrm{~kg}\) which pushes against block \(B\) of mass \(5 \mathrm{~kg}\). What is the net force on the block \(A\) ? The block are placed on a frictionless table.

1 \(20 \overline{\mathrm{N}}\)
2 \(15 \mathrm{~N}\)
3 \(10 \mathrm{~N}\)
4 \(5 \mathrm{~N}\)
LAWS OF MOTION (ADDITIONAL)

371743 The minimum and maximum heights attained by a child on a swing from the ground are 0.75 \(\mathrm{m}\) and \(\mathbf{2 m}\) respectively. Find his/her maximum speed:

1 \(10 \mathrm{~m} \cdot \mathrm{s}^{-1}\)
2 \(5 \mathrm{~m} \cdot \mathrm{s}^{-1}\)
3 \(8 \mathrm{~m} \cdot \mathrm{s}^{-1}\)
4 \(15 \mathrm{~m} \cdot \mathrm{s}^{-1}\)
LAWS OF MOTION (ADDITIONAL)

371740 A ship of mass \(2 \times 10^{7} \mathrm{~kg}\) initially at rest is pulled by a force of \(5 \times 10^{5} \mathrm{~N}\) through a distance of \(2 \mathrm{~m}\). Assuming that the resistance due to water is negligible, the speed of the ship is

1 \(2 \mathrm{~ms}^{-1}\)
2 \(0.01 \mathrm{~ms}^{-1}\)
3 \(0.1 \mathrm{~ms}^{-1}\)
4 \(1 \mathrm{~ms}^{-1}\)
5 \(5 \mathrm{~ms}^{-1}\)
LAWS OF MOTION (ADDITIONAL)

371741 A force of \((2 \hat{i}+3 \hat{j}) N\) acts on a body of mass 1
\(\mathrm{kg}\) which is at rest initially. The acceleration of the body is

1 \((4 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}) \mathrm{ms}^{-2}\)
2 \((2 \hat{i}+3 \hat{j}) \mathrm{ms}^{-2}\)
3 \((3 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}) \mathrm{ms}^{-2}\)
4 \((6 \hat{i}+2 \hat{j}) \mathrm{ms}^{-2}\)
5 \((\hat{i}+\hat{j}) \mathrm{ms}^{-2}\)
LAWS OF MOTION (ADDITIONAL)

371742 A constant horizontal force \(\vec{F}\) of \(30 \mathbf{N}\) is applied to block \(A\) of mass \(10 \mathrm{~kg}\) which pushes against block \(B\) of mass \(5 \mathrm{~kg}\). What is the net force on the block \(A\) ? The block are placed on a frictionless table.

1 \(20 \overline{\mathrm{N}}\)
2 \(15 \mathrm{~N}\)
3 \(10 \mathrm{~N}\)
4 \(5 \mathrm{~N}\)
LAWS OF MOTION (ADDITIONAL)

371743 The minimum and maximum heights attained by a child on a swing from the ground are 0.75 \(\mathrm{m}\) and \(\mathbf{2 m}\) respectively. Find his/her maximum speed:

1 \(10 \mathrm{~m} \cdot \mathrm{s}^{-1}\)
2 \(5 \mathrm{~m} \cdot \mathrm{s}^{-1}\)
3 \(8 \mathrm{~m} \cdot \mathrm{s}^{-1}\)
4 \(15 \mathrm{~m} \cdot \mathrm{s}^{-1}\)
LAWS OF MOTION (ADDITIONAL)

371740 A ship of mass \(2 \times 10^{7} \mathrm{~kg}\) initially at rest is pulled by a force of \(5 \times 10^{5} \mathrm{~N}\) through a distance of \(2 \mathrm{~m}\). Assuming that the resistance due to water is negligible, the speed of the ship is

1 \(2 \mathrm{~ms}^{-1}\)
2 \(0.01 \mathrm{~ms}^{-1}\)
3 \(0.1 \mathrm{~ms}^{-1}\)
4 \(1 \mathrm{~ms}^{-1}\)
5 \(5 \mathrm{~ms}^{-1}\)
LAWS OF MOTION (ADDITIONAL)

371741 A force of \((2 \hat{i}+3 \hat{j}) N\) acts on a body of mass 1
\(\mathrm{kg}\) which is at rest initially. The acceleration of the body is

1 \((4 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}) \mathrm{ms}^{-2}\)
2 \((2 \hat{i}+3 \hat{j}) \mathrm{ms}^{-2}\)
3 \((3 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}) \mathrm{ms}^{-2}\)
4 \((6 \hat{i}+2 \hat{j}) \mathrm{ms}^{-2}\)
5 \((\hat{i}+\hat{j}) \mathrm{ms}^{-2}\)
LAWS OF MOTION (ADDITIONAL)

371742 A constant horizontal force \(\vec{F}\) of \(30 \mathbf{N}\) is applied to block \(A\) of mass \(10 \mathrm{~kg}\) which pushes against block \(B\) of mass \(5 \mathrm{~kg}\). What is the net force on the block \(A\) ? The block are placed on a frictionless table.

1 \(20 \overline{\mathrm{N}}\)
2 \(15 \mathrm{~N}\)
3 \(10 \mathrm{~N}\)
4 \(5 \mathrm{~N}\)
LAWS OF MOTION (ADDITIONAL)

371743 The minimum and maximum heights attained by a child on a swing from the ground are 0.75 \(\mathrm{m}\) and \(\mathbf{2 m}\) respectively. Find his/her maximum speed:

1 \(10 \mathrm{~m} \cdot \mathrm{s}^{-1}\)
2 \(5 \mathrm{~m} \cdot \mathrm{s}^{-1}\)
3 \(8 \mathrm{~m} \cdot \mathrm{s}^{-1}\)
4 \(15 \mathrm{~m} \cdot \mathrm{s}^{-1}\)
LAWS OF MOTION (ADDITIONAL)

371740 A ship of mass \(2 \times 10^{7} \mathrm{~kg}\) initially at rest is pulled by a force of \(5 \times 10^{5} \mathrm{~N}\) through a distance of \(2 \mathrm{~m}\). Assuming that the resistance due to water is negligible, the speed of the ship is

1 \(2 \mathrm{~ms}^{-1}\)
2 \(0.01 \mathrm{~ms}^{-1}\)
3 \(0.1 \mathrm{~ms}^{-1}\)
4 \(1 \mathrm{~ms}^{-1}\)
5 \(5 \mathrm{~ms}^{-1}\)
LAWS OF MOTION (ADDITIONAL)

371741 A force of \((2 \hat{i}+3 \hat{j}) N\) acts on a body of mass 1
\(\mathrm{kg}\) which is at rest initially. The acceleration of the body is

1 \((4 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}) \mathrm{ms}^{-2}\)
2 \((2 \hat{i}+3 \hat{j}) \mathrm{ms}^{-2}\)
3 \((3 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}) \mathrm{ms}^{-2}\)
4 \((6 \hat{i}+2 \hat{j}) \mathrm{ms}^{-2}\)
5 \((\hat{i}+\hat{j}) \mathrm{ms}^{-2}\)
LAWS OF MOTION (ADDITIONAL)

371742 A constant horizontal force \(\vec{F}\) of \(30 \mathbf{N}\) is applied to block \(A\) of mass \(10 \mathrm{~kg}\) which pushes against block \(B\) of mass \(5 \mathrm{~kg}\). What is the net force on the block \(A\) ? The block are placed on a frictionless table.

1 \(20 \overline{\mathrm{N}}\)
2 \(15 \mathrm{~N}\)
3 \(10 \mathrm{~N}\)
4 \(5 \mathrm{~N}\)
LAWS OF MOTION (ADDITIONAL)

371743 The minimum and maximum heights attained by a child on a swing from the ground are 0.75 \(\mathrm{m}\) and \(\mathbf{2 m}\) respectively. Find his/her maximum speed:

1 \(10 \mathrm{~m} \cdot \mathrm{s}^{-1}\)
2 \(5 \mathrm{~m} \cdot \mathrm{s}^{-1}\)
3 \(8 \mathrm{~m} \cdot \mathrm{s}^{-1}\)
4 \(15 \mathrm{~m} \cdot \mathrm{s}^{-1}\)