1 \(\dfrac{9 P_{0} V_{0}}{2 n R}\)
2 \(\dfrac{9 P_{0} V_{0}}{n R}\)
3 \(\dfrac{9 P_{0} V_{0}}{4 n R}\)
4 \(\dfrac{3 P_{0} V_{0}}{2 n R}\)
Explanation:
Equation of line is
\(P{V_0} + {P_0}V = 3{P_0}{V_0}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\)
Also \(P V=n R T\)
From the above two eq's
\(T=\dfrac{3 P_{0} V}{n R}-\dfrac{P_{0} V^{2}}{n R V_{0}}\)
for \(T_{\max }, \dfrac{d T}{d V}=0 \Rightarrow V=\dfrac{3 V_{0}}{2}, P=\dfrac{3 P_{0}}{2}\)
\(\Rightarrow T_{\max }=\dfrac{9 P_{0} V_{0}}{4 n R}\)