368911 A parallel plate capacitor of plate separation \(2\,mm\) is connected in an electric circuit having source voltage \(400\;V\). If the plate area is \(60\;c{m^2}\), then the value of displacement current for \({10^{ - 6}}\sec \) will be \(\left[ {In\,{{10}^{ - 6}}\;s} \right.\) voltage across capacitor becomes 400 volt]
368913
The Maxwell's four equations are written as
(i) \(\oint_{s} \bar{E} \cdot d \bar{s}=\dfrac{q}{\varepsilon_{o}}\)
(ii) \(\oint_{S} B . d s=0\)
(iii) \(\oint_{S} E \cdot d l=\dfrac{d}{d t} \int_{S} B \cdot d s\)
(iv) \(\int \bar{B} \cdot d \bar{l}=\mu_{0} I+\mu_{0} \varepsilon_{0} \dfrac{d}{d t} \int \bar{E} \cdot \mathrm{d} \bar{s}\)
The correct equations are
368911 A parallel plate capacitor of plate separation \(2\,mm\) is connected in an electric circuit having source voltage \(400\;V\). If the plate area is \(60\;c{m^2}\), then the value of displacement current for \({10^{ - 6}}\sec \) will be \(\left[ {In\,{{10}^{ - 6}}\;s} \right.\) voltage across capacitor becomes 400 volt]
368913
The Maxwell's four equations are written as
(i) \(\oint_{s} \bar{E} \cdot d \bar{s}=\dfrac{q}{\varepsilon_{o}}\)
(ii) \(\oint_{S} B . d s=0\)
(iii) \(\oint_{S} E \cdot d l=\dfrac{d}{d t} \int_{S} B \cdot d s\)
(iv) \(\int \bar{B} \cdot d \bar{l}=\mu_{0} I+\mu_{0} \varepsilon_{0} \dfrac{d}{d t} \int \bar{E} \cdot \mathrm{d} \bar{s}\)
The correct equations are
368911 A parallel plate capacitor of plate separation \(2\,mm\) is connected in an electric circuit having source voltage \(400\;V\). If the plate area is \(60\;c{m^2}\), then the value of displacement current for \({10^{ - 6}}\sec \) will be \(\left[ {In\,{{10}^{ - 6}}\;s} \right.\) voltage across capacitor becomes 400 volt]
368913
The Maxwell's four equations are written as
(i) \(\oint_{s} \bar{E} \cdot d \bar{s}=\dfrac{q}{\varepsilon_{o}}\)
(ii) \(\oint_{S} B . d s=0\)
(iii) \(\oint_{S} E \cdot d l=\dfrac{d}{d t} \int_{S} B \cdot d s\)
(iv) \(\int \bar{B} \cdot d \bar{l}=\mu_{0} I+\mu_{0} \varepsilon_{0} \dfrac{d}{d t} \int \bar{E} \cdot \mathrm{d} \bar{s}\)
The correct equations are
368911 A parallel plate capacitor of plate separation \(2\,mm\) is connected in an electric circuit having source voltage \(400\;V\). If the plate area is \(60\;c{m^2}\), then the value of displacement current for \({10^{ - 6}}\sec \) will be \(\left[ {In\,{{10}^{ - 6}}\;s} \right.\) voltage across capacitor becomes 400 volt]
368913
The Maxwell's four equations are written as
(i) \(\oint_{s} \bar{E} \cdot d \bar{s}=\dfrac{q}{\varepsilon_{o}}\)
(ii) \(\oint_{S} B . d s=0\)
(iii) \(\oint_{S} E \cdot d l=\dfrac{d}{d t} \int_{S} B \cdot d s\)
(iv) \(\int \bar{B} \cdot d \bar{l}=\mu_{0} I+\mu_{0} \varepsilon_{0} \dfrac{d}{d t} \int \bar{E} \cdot \mathrm{d} \bar{s}\)
The correct equations are