Nuclear Energy
PHXII13:NUCLEI

363717 \(10^{14}\) fissions per second are taking place in a nuclear reactor having efficiency \(40 \%\). The energy released per fission is \(250\,MeV\). The power output of the reactor is

1 \(2000\,W\)
2 \(4000\,W\)
3 \(1600\,W\)
4 \(3200\,W\)
PHXII13:NUCLEI

363718 Consider the nuclear fission reaction \({{ }_{0}^{1} n+{ }_{92}^{235} U \rightarrow{ }_{56}^{144} B a+{ }_{36}^{89} K r+3{ }_{0}^{1} n}\). Assuming all the kinetic energy is carried away by the fast neutrons only and total binding energies of \({{ }_{92}^{235} {U},{ }_{56}^{144} {Ba}}\), and \({{ }_{36}^{89} {Kr}}\) to be \(1800\,MeV\), \(1200\,MeV\) and \(780\,MeV\) respectively, the average kinetic energy carried by each fast neutron is (in \(MeV\))

1 200
2 180
3 67
4 60
PHXII13:NUCLEI

363719 In a fission reaction \(_{92}^{236}U{ \to ^{117}}X{ + ^{117}}Y + n + n,\) the average binding energy per nucleon of \(X\) and \(Y\) is \(8.5\,MeV\) whereas that of \({ }^{236} U\) is \(7.6\,MeV\).
The total energy liberated will be about :
\({ }_{92}^{236} U \rightarrow{ }^{117} X+{ }^{117} Y+n+n\)

1 \(200\,keV\)
2 \(2\,MeV\)
3 \(200\,MeV\)
4 \(2000\,MeV\)
PHXII13:NUCLEI

363720 Which of the following nuclear fragments corresponding to nuclear fission between neutron \(\left({ }_{0}^{1} n\right)\) and uranium isotope \(\left({ }_{92}^{235} U\right)\) is correct?

1 \(_{56}^{141}Ba + _{36}^{92}Kr + 3_0^1n\)
2 \(_{51}^{153}Sb + _{41}^{99}Nb + 3_0^1n\)
3 \(_{56}^{144}Ba + _{36}^{89}Kr + 4_0^1n\)
4 \(_{56}^{140}Xe + _{38}^{94}Sr + 3_0^1n\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
PHXII13:NUCLEI

363717 \(10^{14}\) fissions per second are taking place in a nuclear reactor having efficiency \(40 \%\). The energy released per fission is \(250\,MeV\). The power output of the reactor is

1 \(2000\,W\)
2 \(4000\,W\)
3 \(1600\,W\)
4 \(3200\,W\)
PHXII13:NUCLEI

363718 Consider the nuclear fission reaction \({{ }_{0}^{1} n+{ }_{92}^{235} U \rightarrow{ }_{56}^{144} B a+{ }_{36}^{89} K r+3{ }_{0}^{1} n}\). Assuming all the kinetic energy is carried away by the fast neutrons only and total binding energies of \({{ }_{92}^{235} {U},{ }_{56}^{144} {Ba}}\), and \({{ }_{36}^{89} {Kr}}\) to be \(1800\,MeV\), \(1200\,MeV\) and \(780\,MeV\) respectively, the average kinetic energy carried by each fast neutron is (in \(MeV\))

1 200
2 180
3 67
4 60
PHXII13:NUCLEI

363719 In a fission reaction \(_{92}^{236}U{ \to ^{117}}X{ + ^{117}}Y + n + n,\) the average binding energy per nucleon of \(X\) and \(Y\) is \(8.5\,MeV\) whereas that of \({ }^{236} U\) is \(7.6\,MeV\).
The total energy liberated will be about :
\({ }_{92}^{236} U \rightarrow{ }^{117} X+{ }^{117} Y+n+n\)

1 \(200\,keV\)
2 \(2\,MeV\)
3 \(200\,MeV\)
4 \(2000\,MeV\)
PHXII13:NUCLEI

363720 Which of the following nuclear fragments corresponding to nuclear fission between neutron \(\left({ }_{0}^{1} n\right)\) and uranium isotope \(\left({ }_{92}^{235} U\right)\) is correct?

1 \(_{56}^{141}Ba + _{36}^{92}Kr + 3_0^1n\)
2 \(_{51}^{153}Sb + _{41}^{99}Nb + 3_0^1n\)
3 \(_{56}^{144}Ba + _{36}^{89}Kr + 4_0^1n\)
4 \(_{56}^{140}Xe + _{38}^{94}Sr + 3_0^1n\)
PHXII13:NUCLEI

363717 \(10^{14}\) fissions per second are taking place in a nuclear reactor having efficiency \(40 \%\). The energy released per fission is \(250\,MeV\). The power output of the reactor is

1 \(2000\,W\)
2 \(4000\,W\)
3 \(1600\,W\)
4 \(3200\,W\)
PHXII13:NUCLEI

363718 Consider the nuclear fission reaction \({{ }_{0}^{1} n+{ }_{92}^{235} U \rightarrow{ }_{56}^{144} B a+{ }_{36}^{89} K r+3{ }_{0}^{1} n}\). Assuming all the kinetic energy is carried away by the fast neutrons only and total binding energies of \({{ }_{92}^{235} {U},{ }_{56}^{144} {Ba}}\), and \({{ }_{36}^{89} {Kr}}\) to be \(1800\,MeV\), \(1200\,MeV\) and \(780\,MeV\) respectively, the average kinetic energy carried by each fast neutron is (in \(MeV\))

1 200
2 180
3 67
4 60
PHXII13:NUCLEI

363719 In a fission reaction \(_{92}^{236}U{ \to ^{117}}X{ + ^{117}}Y + n + n,\) the average binding energy per nucleon of \(X\) and \(Y\) is \(8.5\,MeV\) whereas that of \({ }^{236} U\) is \(7.6\,MeV\).
The total energy liberated will be about :
\({ }_{92}^{236} U \rightarrow{ }^{117} X+{ }^{117} Y+n+n\)

1 \(200\,keV\)
2 \(2\,MeV\)
3 \(200\,MeV\)
4 \(2000\,MeV\)
PHXII13:NUCLEI

363720 Which of the following nuclear fragments corresponding to nuclear fission between neutron \(\left({ }_{0}^{1} n\right)\) and uranium isotope \(\left({ }_{92}^{235} U\right)\) is correct?

1 \(_{56}^{141}Ba + _{36}^{92}Kr + 3_0^1n\)
2 \(_{51}^{153}Sb + _{41}^{99}Nb + 3_0^1n\)
3 \(_{56}^{144}Ba + _{36}^{89}Kr + 4_0^1n\)
4 \(_{56}^{140}Xe + _{38}^{94}Sr + 3_0^1n\)
PHXII13:NUCLEI

363717 \(10^{14}\) fissions per second are taking place in a nuclear reactor having efficiency \(40 \%\). The energy released per fission is \(250\,MeV\). The power output of the reactor is

1 \(2000\,W\)
2 \(4000\,W\)
3 \(1600\,W\)
4 \(3200\,W\)
PHXII13:NUCLEI

363718 Consider the nuclear fission reaction \({{ }_{0}^{1} n+{ }_{92}^{235} U \rightarrow{ }_{56}^{144} B a+{ }_{36}^{89} K r+3{ }_{0}^{1} n}\). Assuming all the kinetic energy is carried away by the fast neutrons only and total binding energies of \({{ }_{92}^{235} {U},{ }_{56}^{144} {Ba}}\), and \({{ }_{36}^{89} {Kr}}\) to be \(1800\,MeV\), \(1200\,MeV\) and \(780\,MeV\) respectively, the average kinetic energy carried by each fast neutron is (in \(MeV\))

1 200
2 180
3 67
4 60
PHXII13:NUCLEI

363719 In a fission reaction \(_{92}^{236}U{ \to ^{117}}X{ + ^{117}}Y + n + n,\) the average binding energy per nucleon of \(X\) and \(Y\) is \(8.5\,MeV\) whereas that of \({ }^{236} U\) is \(7.6\,MeV\).
The total energy liberated will be about :
\({ }_{92}^{236} U \rightarrow{ }^{117} X+{ }^{117} Y+n+n\)

1 \(200\,keV\)
2 \(2\,MeV\)
3 \(200\,MeV\)
4 \(2000\,MeV\)
PHXII13:NUCLEI

363720 Which of the following nuclear fragments corresponding to nuclear fission between neutron \(\left({ }_{0}^{1} n\right)\) and uranium isotope \(\left({ }_{92}^{235} U\right)\) is correct?

1 \(_{56}^{141}Ba + _{36}^{92}Kr + 3_0^1n\)
2 \(_{51}^{153}Sb + _{41}^{99}Nb + 3_0^1n\)
3 \(_{56}^{144}Ba + _{36}^{89}Kr + 4_0^1n\)
4 \(_{56}^{140}Xe + _{38}^{94}Sr + 3_0^1n\)