362772
A conducting wire bent in the form of a parabola \(y^{2}=2 x\) carries a current \(I = 2A\) as shown in the figure. The wire is placed in a uniform magnetic field \(\vec{B}=-4 \hat{k}\) tesla. The magnetic force on the wire is (in newton)
1 \(16 \hat{i}\)
2 \(32 \hat{i}\)
3 \(-16 \hat{i}\)
4 \(-32 \hat{i}\)
Explanation:
Force on current carrying current due to constant magnetic field is \(F=i\left(\int \overline{d i}\right) \times \bar{B}\) \(\begin{aligned}& =i[\text { effective length }] \times \bar{B} \\& =2 \times 4(-\hat{j}) \times-4 \hat{k}=32 \hat{i}\end{aligned}\)
PHXII04:MOVING CHARGES AND MAGNETISM
362773
A straight wire of mass 200\(g\) and length 1.5\(m\) carries a current of 2\(A\). It is suspended in midair by a uniform horizontal magnetic field. The magnitude of \(B\) (in tesla) is \(\left( {g = 9.8\;m{s^{ - 2}}} \right)\)
1 2
2 1.5
3 0.55
4 0.65
Explanation:
The weight of the wire should be balanced by the magnetic force \(\left(F_{B}\right)\). \(\text { i.e., } m g=B i L \Rightarrow B=\dfrac{m g}{i L}=0.65 T\)
PHXII04:MOVING CHARGES AND MAGNETISM
362774
A one metre long wire is lying at right angles to the magnetic field. A force of 1\(kg\) wt. is acting on it in a magnetic field of 0.98 Tesla. The current flowing in it will be:
362775
Assertion : A force of 1\(kg\)-wt acts on 1\(m\) long wire carrying 10\(A\) current held at \(90^{\circ}\) to a magnetic field of 0.98\(T\) Reason : Force acting on current carrying wire \(F=B i l \sin \theta\)
1 Both Assertion and Reason are correct and Reason is the correct explanation of the Assertion.
2 Both Assertion and Reason are correct but Reason is not the correct explanation of the Assertion.
3 Assertion is correct but Reason is incorrect.
4 Assertion is incorrect but reason is correct.
Explanation:
As, \(F=B i l \sin \theta=0.98 \times 10 \times 1 \sin 90^{\circ}\) \(=9.8 \mathrm{~N}=1 \mathrm{~kg}-w t\)
362772
A conducting wire bent in the form of a parabola \(y^{2}=2 x\) carries a current \(I = 2A\) as shown in the figure. The wire is placed in a uniform magnetic field \(\vec{B}=-4 \hat{k}\) tesla. The magnetic force on the wire is (in newton)
1 \(16 \hat{i}\)
2 \(32 \hat{i}\)
3 \(-16 \hat{i}\)
4 \(-32 \hat{i}\)
Explanation:
Force on current carrying current due to constant magnetic field is \(F=i\left(\int \overline{d i}\right) \times \bar{B}\) \(\begin{aligned}& =i[\text { effective length }] \times \bar{B} \\& =2 \times 4(-\hat{j}) \times-4 \hat{k}=32 \hat{i}\end{aligned}\)
PHXII04:MOVING CHARGES AND MAGNETISM
362773
A straight wire of mass 200\(g\) and length 1.5\(m\) carries a current of 2\(A\). It is suspended in midair by a uniform horizontal magnetic field. The magnitude of \(B\) (in tesla) is \(\left( {g = 9.8\;m{s^{ - 2}}} \right)\)
1 2
2 1.5
3 0.55
4 0.65
Explanation:
The weight of the wire should be balanced by the magnetic force \(\left(F_{B}\right)\). \(\text { i.e., } m g=B i L \Rightarrow B=\dfrac{m g}{i L}=0.65 T\)
PHXII04:MOVING CHARGES AND MAGNETISM
362774
A one metre long wire is lying at right angles to the magnetic field. A force of 1\(kg\) wt. is acting on it in a magnetic field of 0.98 Tesla. The current flowing in it will be:
362775
Assertion : A force of 1\(kg\)-wt acts on 1\(m\) long wire carrying 10\(A\) current held at \(90^{\circ}\) to a magnetic field of 0.98\(T\) Reason : Force acting on current carrying wire \(F=B i l \sin \theta\)
1 Both Assertion and Reason are correct and Reason is the correct explanation of the Assertion.
2 Both Assertion and Reason are correct but Reason is not the correct explanation of the Assertion.
3 Assertion is correct but Reason is incorrect.
4 Assertion is incorrect but reason is correct.
Explanation:
As, \(F=B i l \sin \theta=0.98 \times 10 \times 1 \sin 90^{\circ}\) \(=9.8 \mathrm{~N}=1 \mathrm{~kg}-w t\)
362772
A conducting wire bent in the form of a parabola \(y^{2}=2 x\) carries a current \(I = 2A\) as shown in the figure. The wire is placed in a uniform magnetic field \(\vec{B}=-4 \hat{k}\) tesla. The magnetic force on the wire is (in newton)
1 \(16 \hat{i}\)
2 \(32 \hat{i}\)
3 \(-16 \hat{i}\)
4 \(-32 \hat{i}\)
Explanation:
Force on current carrying current due to constant magnetic field is \(F=i\left(\int \overline{d i}\right) \times \bar{B}\) \(\begin{aligned}& =i[\text { effective length }] \times \bar{B} \\& =2 \times 4(-\hat{j}) \times-4 \hat{k}=32 \hat{i}\end{aligned}\)
PHXII04:MOVING CHARGES AND MAGNETISM
362773
A straight wire of mass 200\(g\) and length 1.5\(m\) carries a current of 2\(A\). It is suspended in midair by a uniform horizontal magnetic field. The magnitude of \(B\) (in tesla) is \(\left( {g = 9.8\;m{s^{ - 2}}} \right)\)
1 2
2 1.5
3 0.55
4 0.65
Explanation:
The weight of the wire should be balanced by the magnetic force \(\left(F_{B}\right)\). \(\text { i.e., } m g=B i L \Rightarrow B=\dfrac{m g}{i L}=0.65 T\)
PHXII04:MOVING CHARGES AND MAGNETISM
362774
A one metre long wire is lying at right angles to the magnetic field. A force of 1\(kg\) wt. is acting on it in a magnetic field of 0.98 Tesla. The current flowing in it will be:
362775
Assertion : A force of 1\(kg\)-wt acts on 1\(m\) long wire carrying 10\(A\) current held at \(90^{\circ}\) to a magnetic field of 0.98\(T\) Reason : Force acting on current carrying wire \(F=B i l \sin \theta\)
1 Both Assertion and Reason are correct and Reason is the correct explanation of the Assertion.
2 Both Assertion and Reason are correct but Reason is not the correct explanation of the Assertion.
3 Assertion is correct but Reason is incorrect.
4 Assertion is incorrect but reason is correct.
Explanation:
As, \(F=B i l \sin \theta=0.98 \times 10 \times 1 \sin 90^{\circ}\) \(=9.8 \mathrm{~N}=1 \mathrm{~kg}-w t\)
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
PHXII04:MOVING CHARGES AND MAGNETISM
362772
A conducting wire bent in the form of a parabola \(y^{2}=2 x\) carries a current \(I = 2A\) as shown in the figure. The wire is placed in a uniform magnetic field \(\vec{B}=-4 \hat{k}\) tesla. The magnetic force on the wire is (in newton)
1 \(16 \hat{i}\)
2 \(32 \hat{i}\)
3 \(-16 \hat{i}\)
4 \(-32 \hat{i}\)
Explanation:
Force on current carrying current due to constant magnetic field is \(F=i\left(\int \overline{d i}\right) \times \bar{B}\) \(\begin{aligned}& =i[\text { effective length }] \times \bar{B} \\& =2 \times 4(-\hat{j}) \times-4 \hat{k}=32 \hat{i}\end{aligned}\)
PHXII04:MOVING CHARGES AND MAGNETISM
362773
A straight wire of mass 200\(g\) and length 1.5\(m\) carries a current of 2\(A\). It is suspended in midair by a uniform horizontal magnetic field. The magnitude of \(B\) (in tesla) is \(\left( {g = 9.8\;m{s^{ - 2}}} \right)\)
1 2
2 1.5
3 0.55
4 0.65
Explanation:
The weight of the wire should be balanced by the magnetic force \(\left(F_{B}\right)\). \(\text { i.e., } m g=B i L \Rightarrow B=\dfrac{m g}{i L}=0.65 T\)
PHXII04:MOVING CHARGES AND MAGNETISM
362774
A one metre long wire is lying at right angles to the magnetic field. A force of 1\(kg\) wt. is acting on it in a magnetic field of 0.98 Tesla. The current flowing in it will be:
362775
Assertion : A force of 1\(kg\)-wt acts on 1\(m\) long wire carrying 10\(A\) current held at \(90^{\circ}\) to a magnetic field of 0.98\(T\) Reason : Force acting on current carrying wire \(F=B i l \sin \theta\)
1 Both Assertion and Reason are correct and Reason is the correct explanation of the Assertion.
2 Both Assertion and Reason are correct but Reason is not the correct explanation of the Assertion.
3 Assertion is correct but Reason is incorrect.
4 Assertion is incorrect but reason is correct.
Explanation:
As, \(F=B i l \sin \theta=0.98 \times 10 \times 1 \sin 90^{\circ}\) \(=9.8 \mathrm{~N}=1 \mathrm{~kg}-w t\)