Elastic Moduli
PHXI09:MECHANICAL PROPERTIES OF SOLIDS

369720 The compressibility of water is \(6 \times {10^{ - 10}}\;\,{N^{ - 1}}\;{m^2}\). If one litre is subjected to pressure of \(4 \times {10^7}\,N{m^{ - 2}}\), the decrease in its volume is

1 \(24\,cc\)
2 \(10\,cc\)
3 \(12\,cc\)
4 \(15\,cc\)
PHXI09:MECHANICAL PROPERTIES OF SOLIDS

369721 Estimate the pressure deep inside the sea at a depth \(\mathrm{h}\) below the surface. Assume that the density of water is \(\rho_{0}\) at sea level and its bulk modulus is B. \(P_{0}\) is the atomsphere pressure at sea level \(P\) is the pressure at depth ' \(h\) '.

1 \(P=P_{0}+B \ln \left(1-\dfrac{\rho_{0} g h}{B}\right)\)
2 \(P=P_{0}-B \ln \left(1-\dfrac{\rho_{0} g h}{B}\right)\)
3 \(P=P_{0}+B \ln \left(1+\dfrac{\rho_{0} g h}{B}\right)\)
4 \(P=P_{0}-B \ln \left(1+\dfrac{\rho_{0} g h}{B}\right)\)
PHXI09:MECHANICAL PROPERTIES OF SOLIDS

369722 The relation between \(Y, \eta\) and \(K\) for a elastic material is

1 \(\dfrac{1}{K}=\dfrac{1}{3 Y}+\dfrac{1}{9 \eta}\)
2 \(\dfrac{1}{\eta}=\dfrac{1}{3 Y}+\dfrac{1}{9 K}\)
3 \(\dfrac{1}{Y}=\dfrac{1}{3 \eta}+\dfrac{1}{9 K}\)
4 \(\dfrac{1}{Y}=\dfrac{1}{3 K}+\dfrac{1}{9 \eta}\)
PHXI09:MECHANICAL PROPERTIES OF SOLIDS

369723 Determine the volume contraction of a solid copper cube, \(10\;cm\) on an edge, when subjected to a hydraulic pressure of \(7 \times {10^6}\;Pa\). \(K\) for copper \( = 140 \times {10^6}\;Pa\).

1 \(5 \times {10^{ - 7}}\;{m^3}\)
2 \(4 \times {10^{ - 8}}\;{m^3}\)
3 \(5 \times {10^{ - 8}}\;{m^3}\)
4 \(6 \times {10^{ - 8}}\;{m^3}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
PHXI09:MECHANICAL PROPERTIES OF SOLIDS

369720 The compressibility of water is \(6 \times {10^{ - 10}}\;\,{N^{ - 1}}\;{m^2}\). If one litre is subjected to pressure of \(4 \times {10^7}\,N{m^{ - 2}}\), the decrease in its volume is

1 \(24\,cc\)
2 \(10\,cc\)
3 \(12\,cc\)
4 \(15\,cc\)
PHXI09:MECHANICAL PROPERTIES OF SOLIDS

369721 Estimate the pressure deep inside the sea at a depth \(\mathrm{h}\) below the surface. Assume that the density of water is \(\rho_{0}\) at sea level and its bulk modulus is B. \(P_{0}\) is the atomsphere pressure at sea level \(P\) is the pressure at depth ' \(h\) '.

1 \(P=P_{0}+B \ln \left(1-\dfrac{\rho_{0} g h}{B}\right)\)
2 \(P=P_{0}-B \ln \left(1-\dfrac{\rho_{0} g h}{B}\right)\)
3 \(P=P_{0}+B \ln \left(1+\dfrac{\rho_{0} g h}{B}\right)\)
4 \(P=P_{0}-B \ln \left(1+\dfrac{\rho_{0} g h}{B}\right)\)
PHXI09:MECHANICAL PROPERTIES OF SOLIDS

369722 The relation between \(Y, \eta\) and \(K\) for a elastic material is

1 \(\dfrac{1}{K}=\dfrac{1}{3 Y}+\dfrac{1}{9 \eta}\)
2 \(\dfrac{1}{\eta}=\dfrac{1}{3 Y}+\dfrac{1}{9 K}\)
3 \(\dfrac{1}{Y}=\dfrac{1}{3 \eta}+\dfrac{1}{9 K}\)
4 \(\dfrac{1}{Y}=\dfrac{1}{3 K}+\dfrac{1}{9 \eta}\)
PHXI09:MECHANICAL PROPERTIES OF SOLIDS

369723 Determine the volume contraction of a solid copper cube, \(10\;cm\) on an edge, when subjected to a hydraulic pressure of \(7 \times {10^6}\;Pa\). \(K\) for copper \( = 140 \times {10^6}\;Pa\).

1 \(5 \times {10^{ - 7}}\;{m^3}\)
2 \(4 \times {10^{ - 8}}\;{m^3}\)
3 \(5 \times {10^{ - 8}}\;{m^3}\)
4 \(6 \times {10^{ - 8}}\;{m^3}\)
PHXI09:MECHANICAL PROPERTIES OF SOLIDS

369720 The compressibility of water is \(6 \times {10^{ - 10}}\;\,{N^{ - 1}}\;{m^2}\). If one litre is subjected to pressure of \(4 \times {10^7}\,N{m^{ - 2}}\), the decrease in its volume is

1 \(24\,cc\)
2 \(10\,cc\)
3 \(12\,cc\)
4 \(15\,cc\)
PHXI09:MECHANICAL PROPERTIES OF SOLIDS

369721 Estimate the pressure deep inside the sea at a depth \(\mathrm{h}\) below the surface. Assume that the density of water is \(\rho_{0}\) at sea level and its bulk modulus is B. \(P_{0}\) is the atomsphere pressure at sea level \(P\) is the pressure at depth ' \(h\) '.

1 \(P=P_{0}+B \ln \left(1-\dfrac{\rho_{0} g h}{B}\right)\)
2 \(P=P_{0}-B \ln \left(1-\dfrac{\rho_{0} g h}{B}\right)\)
3 \(P=P_{0}+B \ln \left(1+\dfrac{\rho_{0} g h}{B}\right)\)
4 \(P=P_{0}-B \ln \left(1+\dfrac{\rho_{0} g h}{B}\right)\)
PHXI09:MECHANICAL PROPERTIES OF SOLIDS

369722 The relation between \(Y, \eta\) and \(K\) for a elastic material is

1 \(\dfrac{1}{K}=\dfrac{1}{3 Y}+\dfrac{1}{9 \eta}\)
2 \(\dfrac{1}{\eta}=\dfrac{1}{3 Y}+\dfrac{1}{9 K}\)
3 \(\dfrac{1}{Y}=\dfrac{1}{3 \eta}+\dfrac{1}{9 K}\)
4 \(\dfrac{1}{Y}=\dfrac{1}{3 K}+\dfrac{1}{9 \eta}\)
PHXI09:MECHANICAL PROPERTIES OF SOLIDS

369723 Determine the volume contraction of a solid copper cube, \(10\;cm\) on an edge, when subjected to a hydraulic pressure of \(7 \times {10^6}\;Pa\). \(K\) for copper \( = 140 \times {10^6}\;Pa\).

1 \(5 \times {10^{ - 7}}\;{m^3}\)
2 \(4 \times {10^{ - 8}}\;{m^3}\)
3 \(5 \times {10^{ - 8}}\;{m^3}\)
4 \(6 \times {10^{ - 8}}\;{m^3}\)
PHXI09:MECHANICAL PROPERTIES OF SOLIDS

369720 The compressibility of water is \(6 \times {10^{ - 10}}\;\,{N^{ - 1}}\;{m^2}\). If one litre is subjected to pressure of \(4 \times {10^7}\,N{m^{ - 2}}\), the decrease in its volume is

1 \(24\,cc\)
2 \(10\,cc\)
3 \(12\,cc\)
4 \(15\,cc\)
PHXI09:MECHANICAL PROPERTIES OF SOLIDS

369721 Estimate the pressure deep inside the sea at a depth \(\mathrm{h}\) below the surface. Assume that the density of water is \(\rho_{0}\) at sea level and its bulk modulus is B. \(P_{0}\) is the atomsphere pressure at sea level \(P\) is the pressure at depth ' \(h\) '.

1 \(P=P_{0}+B \ln \left(1-\dfrac{\rho_{0} g h}{B}\right)\)
2 \(P=P_{0}-B \ln \left(1-\dfrac{\rho_{0} g h}{B}\right)\)
3 \(P=P_{0}+B \ln \left(1+\dfrac{\rho_{0} g h}{B}\right)\)
4 \(P=P_{0}-B \ln \left(1+\dfrac{\rho_{0} g h}{B}\right)\)
PHXI09:MECHANICAL PROPERTIES OF SOLIDS

369722 The relation between \(Y, \eta\) and \(K\) for a elastic material is

1 \(\dfrac{1}{K}=\dfrac{1}{3 Y}+\dfrac{1}{9 \eta}\)
2 \(\dfrac{1}{\eta}=\dfrac{1}{3 Y}+\dfrac{1}{9 K}\)
3 \(\dfrac{1}{Y}=\dfrac{1}{3 \eta}+\dfrac{1}{9 K}\)
4 \(\dfrac{1}{Y}=\dfrac{1}{3 K}+\dfrac{1}{9 \eta}\)
PHXI09:MECHANICAL PROPERTIES OF SOLIDS

369723 Determine the volume contraction of a solid copper cube, \(10\;cm\) on an edge, when subjected to a hydraulic pressure of \(7 \times {10^6}\;Pa\). \(K\) for copper \( = 140 \times {10^6}\;Pa\).

1 \(5 \times {10^{ - 7}}\;{m^3}\)
2 \(4 \times {10^{ - 8}}\;{m^3}\)
3 \(5 \times {10^{ - 8}}\;{m^3}\)
4 \(6 \times {10^{ - 8}}\;{m^3}\)