Explanation:
Let the relative permittivity be \(\varepsilon_{r}\).
Speed of an EM wave in a medium is given by
\(v=\dfrac{1}{\sqrt{\mu_{r} \varepsilon_{r}} \sqrt{\mu_{0} \varepsilon_{0}}}\)
\(\Rightarrow v=\dfrac{c}{\sqrt{\mu_{r} \varepsilon_{r}}}\)
\(\therefore \,\,\,\,\,\,{\mu _r}{\varepsilon _r} = {\left( {\frac{c}{v}} \right)^2}\)
\(\Rightarrow \mu_{r} \varepsilon_{r}=\left(\dfrac{3 \times 10^{8}}{1.5 \times 10^{8}}\right)^{2}\)
\( \Rightarrow {\varepsilon _r} = \frac{4}{{{\mu _r}}} = \frac{4}{2} = 2\quad (\therefore {\mu _r} = 2.0\,\,\,\,\,\,({\text{given}}))\)