Electromagnetic Waves
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
PHXI15:WAVES

358831 An electromagnetic wave of frequency \(1 \times 10^{14}\) hertz is propagating along \(z\) - axis. The amplitude of electric field is \(4\;\,V/m\).
If \({\varepsilon _0} = 8.8 \times {10^{ - 12}}{C^2}/N - {m^2}\), then average energy density of electric field will be :-

1 \(35.2 \times {10^{ - 12}}\;J/{m^3}\)
2 \(35.2 \times {10^{ - 10}}\;J/{m^3}\)
3 \(35.2 \times {10^{ - 13}}\;J/{m^3}\)
4 \(35.2 \times {10^{ - 13}}\;J/{m^3}\)
PHXI15:WAVES

358832 A radio station on the surface of the earth radiates \(50\;kW\). If transmitter radiates equally in all directions above the surface of the earth find the amplitude of electric field detected \(100\;km\) away. [In the downward direction assume no radiation]

1 \(2.45 \times {10^{ - 1}}\,V{m^{ - 1}}\)
2 \(2.45 \times {10^{ - 3}}\,V{m^{ - 1}}\)
3 \(2.45 \times {10^{ - 2}}\,V{m^{ - 1}}\)
4 \(2.45\,V{m^{ - 1}}\)
PHXI15:WAVES

358833 The sun delivers \({10^3}\;W/{m^2}\) of electromagnetic flux to the earth's surface. The total power that is incident on a roof of dimensions \(8\;m \times 20\;m\), will be

1 \(3.4 \times {10^4}\;W\)
2 \(6.4 \times {10^3}\;W\)
3 \(1.6 \times {10^5}\;W\)
4 None of these
PHXI15:WAVES

358834 The average magnetic energy density of an
electromagnetic wave of wave length \(\lambda \) travelling in free space is given by

1 \(\,\frac{{{B^2}}}{{2\lambda }}\)
2 \(\frac{{{B^2}}}{{2{\mu _0}}}\)
3 \(\frac{{2{B^2}}}{{{\mu _0}\lambda }}\)
4 \(\frac{B}{{{\mu _0}\lambda }}\)
PHXI15:WAVES

358831 An electromagnetic wave of frequency \(1 \times 10^{14}\) hertz is propagating along \(z\) - axis. The amplitude of electric field is \(4\;\,V/m\).
If \({\varepsilon _0} = 8.8 \times {10^{ - 12}}{C^2}/N - {m^2}\), then average energy density of electric field will be :-

1 \(35.2 \times {10^{ - 12}}\;J/{m^3}\)
2 \(35.2 \times {10^{ - 10}}\;J/{m^3}\)
3 \(35.2 \times {10^{ - 13}}\;J/{m^3}\)
4 \(35.2 \times {10^{ - 13}}\;J/{m^3}\)
PHXI15:WAVES

358832 A radio station on the surface of the earth radiates \(50\;kW\). If transmitter radiates equally in all directions above the surface of the earth find the amplitude of electric field detected \(100\;km\) away. [In the downward direction assume no radiation]

1 \(2.45 \times {10^{ - 1}}\,V{m^{ - 1}}\)
2 \(2.45 \times {10^{ - 3}}\,V{m^{ - 1}}\)
3 \(2.45 \times {10^{ - 2}}\,V{m^{ - 1}}\)
4 \(2.45\,V{m^{ - 1}}\)
PHXI15:WAVES

358833 The sun delivers \({10^3}\;W/{m^2}\) of electromagnetic flux to the earth's surface. The total power that is incident on a roof of dimensions \(8\;m \times 20\;m\), will be

1 \(3.4 \times {10^4}\;W\)
2 \(6.4 \times {10^3}\;W\)
3 \(1.6 \times {10^5}\;W\)
4 None of these
PHXI15:WAVES

358834 The average magnetic energy density of an
electromagnetic wave of wave length \(\lambda \) travelling in free space is given by

1 \(\,\frac{{{B^2}}}{{2\lambda }}\)
2 \(\frac{{{B^2}}}{{2{\mu _0}}}\)
3 \(\frac{{2{B^2}}}{{{\mu _0}\lambda }}\)
4 \(\frac{B}{{{\mu _0}\lambda }}\)
PHXI15:WAVES

358831 An electromagnetic wave of frequency \(1 \times 10^{14}\) hertz is propagating along \(z\) - axis. The amplitude of electric field is \(4\;\,V/m\).
If \({\varepsilon _0} = 8.8 \times {10^{ - 12}}{C^2}/N - {m^2}\), then average energy density of electric field will be :-

1 \(35.2 \times {10^{ - 12}}\;J/{m^3}\)
2 \(35.2 \times {10^{ - 10}}\;J/{m^3}\)
3 \(35.2 \times {10^{ - 13}}\;J/{m^3}\)
4 \(35.2 \times {10^{ - 13}}\;J/{m^3}\)
PHXI15:WAVES

358832 A radio station on the surface of the earth radiates \(50\;kW\). If transmitter radiates equally in all directions above the surface of the earth find the amplitude of electric field detected \(100\;km\) away. [In the downward direction assume no radiation]

1 \(2.45 \times {10^{ - 1}}\,V{m^{ - 1}}\)
2 \(2.45 \times {10^{ - 3}}\,V{m^{ - 1}}\)
3 \(2.45 \times {10^{ - 2}}\,V{m^{ - 1}}\)
4 \(2.45\,V{m^{ - 1}}\)
PHXI15:WAVES

358833 The sun delivers \({10^3}\;W/{m^2}\) of electromagnetic flux to the earth's surface. The total power that is incident on a roof of dimensions \(8\;m \times 20\;m\), will be

1 \(3.4 \times {10^4}\;W\)
2 \(6.4 \times {10^3}\;W\)
3 \(1.6 \times {10^5}\;W\)
4 None of these
PHXI15:WAVES

358834 The average magnetic energy density of an
electromagnetic wave of wave length \(\lambda \) travelling in free space is given by

1 \(\,\frac{{{B^2}}}{{2\lambda }}\)
2 \(\frac{{{B^2}}}{{2{\mu _0}}}\)
3 \(\frac{{2{B^2}}}{{{\mu _0}\lambda }}\)
4 \(\frac{B}{{{\mu _0}\lambda }}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
PHXI15:WAVES

358831 An electromagnetic wave of frequency \(1 \times 10^{14}\) hertz is propagating along \(z\) - axis. The amplitude of electric field is \(4\;\,V/m\).
If \({\varepsilon _0} = 8.8 \times {10^{ - 12}}{C^2}/N - {m^2}\), then average energy density of electric field will be :-

1 \(35.2 \times {10^{ - 12}}\;J/{m^3}\)
2 \(35.2 \times {10^{ - 10}}\;J/{m^3}\)
3 \(35.2 \times {10^{ - 13}}\;J/{m^3}\)
4 \(35.2 \times {10^{ - 13}}\;J/{m^3}\)
PHXI15:WAVES

358832 A radio station on the surface of the earth radiates \(50\;kW\). If transmitter radiates equally in all directions above the surface of the earth find the amplitude of electric field detected \(100\;km\) away. [In the downward direction assume no radiation]

1 \(2.45 \times {10^{ - 1}}\,V{m^{ - 1}}\)
2 \(2.45 \times {10^{ - 3}}\,V{m^{ - 1}}\)
3 \(2.45 \times {10^{ - 2}}\,V{m^{ - 1}}\)
4 \(2.45\,V{m^{ - 1}}\)
PHXI15:WAVES

358833 The sun delivers \({10^3}\;W/{m^2}\) of electromagnetic flux to the earth's surface. The total power that is incident on a roof of dimensions \(8\;m \times 20\;m\), will be

1 \(3.4 \times {10^4}\;W\)
2 \(6.4 \times {10^3}\;W\)
3 \(1.6 \times {10^5}\;W\)
4 None of these
PHXI15:WAVES

358834 The average magnetic energy density of an
electromagnetic wave of wave length \(\lambda \) travelling in free space is given by

1 \(\,\frac{{{B^2}}}{{2\lambda }}\)
2 \(\frac{{{B^2}}}{{2{\mu _0}}}\)
3 \(\frac{{2{B^2}}}{{{\mu _0}\lambda }}\)
4 \(\frac{B}{{{\mu _0}\lambda }}\)