Scalar Product of Vectors
PHXI06:WORK ENERGY AND POWER

355534 If \(|\vec{A}-\vec{B}|=|\vec{A}|-|\vec{B}|\), the angle between \(\vec{A}\) and \(\vec{B}\) is

1 \(60^{\circ}\)
2 \(0^{\circ}\)
3 \(120^{\circ}\)
4 \(90^{\circ}\)
PHXI06:WORK ENERGY AND POWER

355535 If for two vectors \(\vec{A}\) and \(\vec{B}\), sum \((\vec{A}+\vec{B})\) is perpendicular to the difference \((\vec{A}-\vec{B})\). The ratio of their magnitudes is

1 1
2 2
3 3
4 None of these
PHXI06:WORK ENERGY AND POWER

355536 If \({\vec{a}, \vec{b}}\) and \({\vec{c}}\) are non-zero coplanar vectors, such that \({\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=0}\). If \({|\vec{a}|=1}\) unit and \({|\vec{c}|=6}\) units. The value of \({|\vec{a} \cdot \vec{c}|}\). Is

1 3
2 9
3 6
4 5
PHXI06:WORK ENERGY AND POWER

355537 The angle between the two vectors \(\vec{A}=5 \hat{i}+5 \hat{j}\) and \(\vec{B}=5 \hat{i}-5 \hat{j}\) will be

1 Zero
2 \(45^{\circ}\)
3 \(90^{\circ}\)
4 \(180^{\circ}\)
PHXI06:WORK ENERGY AND POWER

355534 If \(|\vec{A}-\vec{B}|=|\vec{A}|-|\vec{B}|\), the angle between \(\vec{A}\) and \(\vec{B}\) is

1 \(60^{\circ}\)
2 \(0^{\circ}\)
3 \(120^{\circ}\)
4 \(90^{\circ}\)
PHXI06:WORK ENERGY AND POWER

355535 If for two vectors \(\vec{A}\) and \(\vec{B}\), sum \((\vec{A}+\vec{B})\) is perpendicular to the difference \((\vec{A}-\vec{B})\). The ratio of their magnitudes is

1 1
2 2
3 3
4 None of these
PHXI06:WORK ENERGY AND POWER

355536 If \({\vec{a}, \vec{b}}\) and \({\vec{c}}\) are non-zero coplanar vectors, such that \({\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=0}\). If \({|\vec{a}|=1}\) unit and \({|\vec{c}|=6}\) units. The value of \({|\vec{a} \cdot \vec{c}|}\). Is

1 3
2 9
3 6
4 5
PHXI06:WORK ENERGY AND POWER

355537 The angle between the two vectors \(\vec{A}=5 \hat{i}+5 \hat{j}\) and \(\vec{B}=5 \hat{i}-5 \hat{j}\) will be

1 Zero
2 \(45^{\circ}\)
3 \(90^{\circ}\)
4 \(180^{\circ}\)
PHXI06:WORK ENERGY AND POWER

355534 If \(|\vec{A}-\vec{B}|=|\vec{A}|-|\vec{B}|\), the angle between \(\vec{A}\) and \(\vec{B}\) is

1 \(60^{\circ}\)
2 \(0^{\circ}\)
3 \(120^{\circ}\)
4 \(90^{\circ}\)
PHXI06:WORK ENERGY AND POWER

355535 If for two vectors \(\vec{A}\) and \(\vec{B}\), sum \((\vec{A}+\vec{B})\) is perpendicular to the difference \((\vec{A}-\vec{B})\). The ratio of their magnitudes is

1 1
2 2
3 3
4 None of these
PHXI06:WORK ENERGY AND POWER

355536 If \({\vec{a}, \vec{b}}\) and \({\vec{c}}\) are non-zero coplanar vectors, such that \({\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=0}\). If \({|\vec{a}|=1}\) unit and \({|\vec{c}|=6}\) units. The value of \({|\vec{a} \cdot \vec{c}|}\). Is

1 3
2 9
3 6
4 5
PHXI06:WORK ENERGY AND POWER

355537 The angle between the two vectors \(\vec{A}=5 \hat{i}+5 \hat{j}\) and \(\vec{B}=5 \hat{i}-5 \hat{j}\) will be

1 Zero
2 \(45^{\circ}\)
3 \(90^{\circ}\)
4 \(180^{\circ}\)
PHXI06:WORK ENERGY AND POWER

355534 If \(|\vec{A}-\vec{B}|=|\vec{A}|-|\vec{B}|\), the angle between \(\vec{A}\) and \(\vec{B}\) is

1 \(60^{\circ}\)
2 \(0^{\circ}\)
3 \(120^{\circ}\)
4 \(90^{\circ}\)
PHXI06:WORK ENERGY AND POWER

355535 If for two vectors \(\vec{A}\) and \(\vec{B}\), sum \((\vec{A}+\vec{B})\) is perpendicular to the difference \((\vec{A}-\vec{B})\). The ratio of their magnitudes is

1 1
2 2
3 3
4 None of these
PHXI06:WORK ENERGY AND POWER

355536 If \({\vec{a}, \vec{b}}\) and \({\vec{c}}\) are non-zero coplanar vectors, such that \({\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=0}\). If \({|\vec{a}|=1}\) unit and \({|\vec{c}|=6}\) units. The value of \({|\vec{a} \cdot \vec{c}|}\). Is

1 3
2 9
3 6
4 5
PHXI06:WORK ENERGY AND POWER

355537 The angle between the two vectors \(\vec{A}=5 \hat{i}+5 \hat{j}\) and \(\vec{B}=5 \hat{i}-5 \hat{j}\) will be

1 Zero
2 \(45^{\circ}\)
3 \(90^{\circ}\)
4 \(180^{\circ}\)