Superposition of Transverse Waves
PHXI15:WAVES

355135 The ends of a stretched wire of length \(L\) are fixed at \(x = 0\) and \(x = L\). In one experiment, the displacement of the wire is \(y_{1}=A \sin \left(\dfrac{\pi x}{L}\right) \sin\) \((\omega t)\) and energy is \(E_{1}\) and in another experiment its displacement is \({y_2} = A\sin \left( {\frac{{2\pi x}}{L}} \right)\sin (2\omega t)\) and energy is \(E_{2}\). Then

1 \(E_{2}=E_{1}\)
2 \(E_{2}=2 E_{1}\)
3 \(E_{2}=4 E_{1}\)
4 \(E_{2}=16 E_{1}\)
PHXI15:WAVES

355136 A stretched wire will produce a note of very high frequency, then the nature of the wire is

1 Thin and short wire of light material under high tension
2 Thick and short wire of light material under high tension
3 Thin and long wire of light material under high tension
4 Thin and short wire of heavy material under high tension.
PHXI15:WAVES

355137 For superposition of two waves, the following is correct

1 They must have the same frequency and wavelength
2 They must have equal frequencies but may have unequal wavelengths
3 They must have the same wavelength, but may have different frequencies
4 They may have different wavelength and different frequencies
PHXI15:WAVES

355138 Which of the following is a standing wave equation?

1 \(y=a x^{2}-b t^{2}\)
2 \(y=A \sin \omega t \cos k x\)
3 \(y=\cos ^{2}(k x-\omega t)\)
4 \(y=(x-v t)^{3}\)
PHXI15:WAVES

355135 The ends of a stretched wire of length \(L\) are fixed at \(x = 0\) and \(x = L\). In one experiment, the displacement of the wire is \(y_{1}=A \sin \left(\dfrac{\pi x}{L}\right) \sin\) \((\omega t)\) and energy is \(E_{1}\) and in another experiment its displacement is \({y_2} = A\sin \left( {\frac{{2\pi x}}{L}} \right)\sin (2\omega t)\) and energy is \(E_{2}\). Then

1 \(E_{2}=E_{1}\)
2 \(E_{2}=2 E_{1}\)
3 \(E_{2}=4 E_{1}\)
4 \(E_{2}=16 E_{1}\)
PHXI15:WAVES

355136 A stretched wire will produce a note of very high frequency, then the nature of the wire is

1 Thin and short wire of light material under high tension
2 Thick and short wire of light material under high tension
3 Thin and long wire of light material under high tension
4 Thin and short wire of heavy material under high tension.
PHXI15:WAVES

355137 For superposition of two waves, the following is correct

1 They must have the same frequency and wavelength
2 They must have equal frequencies but may have unequal wavelengths
3 They must have the same wavelength, but may have different frequencies
4 They may have different wavelength and different frequencies
PHXI15:WAVES

355138 Which of the following is a standing wave equation?

1 \(y=a x^{2}-b t^{2}\)
2 \(y=A \sin \omega t \cos k x\)
3 \(y=\cos ^{2}(k x-\omega t)\)
4 \(y=(x-v t)^{3}\)
PHXI15:WAVES

355135 The ends of a stretched wire of length \(L\) are fixed at \(x = 0\) and \(x = L\). In one experiment, the displacement of the wire is \(y_{1}=A \sin \left(\dfrac{\pi x}{L}\right) \sin\) \((\omega t)\) and energy is \(E_{1}\) and in another experiment its displacement is \({y_2} = A\sin \left( {\frac{{2\pi x}}{L}} \right)\sin (2\omega t)\) and energy is \(E_{2}\). Then

1 \(E_{2}=E_{1}\)
2 \(E_{2}=2 E_{1}\)
3 \(E_{2}=4 E_{1}\)
4 \(E_{2}=16 E_{1}\)
PHXI15:WAVES

355136 A stretched wire will produce a note of very high frequency, then the nature of the wire is

1 Thin and short wire of light material under high tension
2 Thick and short wire of light material under high tension
3 Thin and long wire of light material under high tension
4 Thin and short wire of heavy material under high tension.
PHXI15:WAVES

355137 For superposition of two waves, the following is correct

1 They must have the same frequency and wavelength
2 They must have equal frequencies but may have unequal wavelengths
3 They must have the same wavelength, but may have different frequencies
4 They may have different wavelength and different frequencies
PHXI15:WAVES

355138 Which of the following is a standing wave equation?

1 \(y=a x^{2}-b t^{2}\)
2 \(y=A \sin \omega t \cos k x\)
3 \(y=\cos ^{2}(k x-\omega t)\)
4 \(y=(x-v t)^{3}\)
PHXI15:WAVES

355135 The ends of a stretched wire of length \(L\) are fixed at \(x = 0\) and \(x = L\). In one experiment, the displacement of the wire is \(y_{1}=A \sin \left(\dfrac{\pi x}{L}\right) \sin\) \((\omega t)\) and energy is \(E_{1}\) and in another experiment its displacement is \({y_2} = A\sin \left( {\frac{{2\pi x}}{L}} \right)\sin (2\omega t)\) and energy is \(E_{2}\). Then

1 \(E_{2}=E_{1}\)
2 \(E_{2}=2 E_{1}\)
3 \(E_{2}=4 E_{1}\)
4 \(E_{2}=16 E_{1}\)
PHXI15:WAVES

355136 A stretched wire will produce a note of very high frequency, then the nature of the wire is

1 Thin and short wire of light material under high tension
2 Thick and short wire of light material under high tension
3 Thin and long wire of light material under high tension
4 Thin and short wire of heavy material under high tension.
PHXI15:WAVES

355137 For superposition of two waves, the following is correct

1 They must have the same frequency and wavelength
2 They must have equal frequencies but may have unequal wavelengths
3 They must have the same wavelength, but may have different frequencies
4 They may have different wavelength and different frequencies
PHXI15:WAVES

355138 Which of the following is a standing wave equation?

1 \(y=a x^{2}-b t^{2}\)
2 \(y=A \sin \omega t \cos k x\)
3 \(y=\cos ^{2}(k x-\omega t)\)
4 \(y=(x-v t)^{3}\)