Earth Satellites
PHXI08:GRAVITATION

359706 The additional kinetic energy to be provided to a satellite of mass \(m\) revolving around a planet of mass \(M\), to transfer it from a circular orbit of radius \(R_{1}\) to another of radius \(R_{2}\left(R_{2}>R_{1}\right)\) is

1 \(GmM\left( {\frac{1}{{{R_1}}} - \frac{1}{{{R_2}}}} \right)\)
2 \(G m M\left(\dfrac{1}{R_{1}^{2}}-\dfrac{1}{R_{2}^{2}}\right)\)
3 \(\dfrac{1}{2} G m M\left(\dfrac{1}{R_{1}}-\dfrac{1}{R_{2}}\right)\)
4 \(2 G m M\left(\dfrac{1}{R_{1}}-\dfrac{1}{R_{2}}\right)\)
PHXI08:GRAVITATION

359707 Match the Column I and Column II
supporting img

(Where \(a = \) radius of planet orbit, \(r = \) radius of planet, \(M = \) mass of Sun, \(m = \) mass of planet). Choose the correct answer from the options given below.

1 A - P, B - Q, C - R, D - S
2 A - P, B - S, C - Q, D - R
3 A - R, B - S, C - P, D - Q
4 A - Q, B - P, C - S, D - R
PHXI08:GRAVITATION

359708 What is the minimum energy required to launch a satellite of mass \(m\) from the surface of a planet of mass \(M\) and radius \(R\) in a circular orbit at an altitude of \(2 R\) ?

1 \(\dfrac{5 G m M}{6 R}\)
2 \(\dfrac{G m M}{3 R}\)
3 \(\dfrac{2 G m M}{3 R}\)
4 \(\dfrac{G m M}{2 R}\)
PHXI08:GRAVITATION

359709 The minimum energy required to launch a satellite of mass \({m}\) from the surface of earth of mass \({M}\) and radius \({R}\) in a circular orbit at an altitude of \({2 R}\) from the surface of the earth is:

1 \({\dfrac{5 G m M}{6 R}}\)
2 \({\dfrac{2 G m M}{3 R}}\)
3 \({\dfrac{G m M}{2 R}}\)
4 \({\dfrac{G m M}{3 R}}\)
PHXI08:GRAVITATION

359706 The additional kinetic energy to be provided to a satellite of mass \(m\) revolving around a planet of mass \(M\), to transfer it from a circular orbit of radius \(R_{1}\) to another of radius \(R_{2}\left(R_{2}>R_{1}\right)\) is

1 \(GmM\left( {\frac{1}{{{R_1}}} - \frac{1}{{{R_2}}}} \right)\)
2 \(G m M\left(\dfrac{1}{R_{1}^{2}}-\dfrac{1}{R_{2}^{2}}\right)\)
3 \(\dfrac{1}{2} G m M\left(\dfrac{1}{R_{1}}-\dfrac{1}{R_{2}}\right)\)
4 \(2 G m M\left(\dfrac{1}{R_{1}}-\dfrac{1}{R_{2}}\right)\)
PHXI08:GRAVITATION

359707 Match the Column I and Column II
supporting img

(Where \(a = \) radius of planet orbit, \(r = \) radius of planet, \(M = \) mass of Sun, \(m = \) mass of planet). Choose the correct answer from the options given below.

1 A - P, B - Q, C - R, D - S
2 A - P, B - S, C - Q, D - R
3 A - R, B - S, C - P, D - Q
4 A - Q, B - P, C - S, D - R
PHXI08:GRAVITATION

359708 What is the minimum energy required to launch a satellite of mass \(m\) from the surface of a planet of mass \(M\) and radius \(R\) in a circular orbit at an altitude of \(2 R\) ?

1 \(\dfrac{5 G m M}{6 R}\)
2 \(\dfrac{G m M}{3 R}\)
3 \(\dfrac{2 G m M}{3 R}\)
4 \(\dfrac{G m M}{2 R}\)
PHXI08:GRAVITATION

359709 The minimum energy required to launch a satellite of mass \({m}\) from the surface of earth of mass \({M}\) and radius \({R}\) in a circular orbit at an altitude of \({2 R}\) from the surface of the earth is:

1 \({\dfrac{5 G m M}{6 R}}\)
2 \({\dfrac{2 G m M}{3 R}}\)
3 \({\dfrac{G m M}{2 R}}\)
4 \({\dfrac{G m M}{3 R}}\)
PHXI08:GRAVITATION

359706 The additional kinetic energy to be provided to a satellite of mass \(m\) revolving around a planet of mass \(M\), to transfer it from a circular orbit of radius \(R_{1}\) to another of radius \(R_{2}\left(R_{2}>R_{1}\right)\) is

1 \(GmM\left( {\frac{1}{{{R_1}}} - \frac{1}{{{R_2}}}} \right)\)
2 \(G m M\left(\dfrac{1}{R_{1}^{2}}-\dfrac{1}{R_{2}^{2}}\right)\)
3 \(\dfrac{1}{2} G m M\left(\dfrac{1}{R_{1}}-\dfrac{1}{R_{2}}\right)\)
4 \(2 G m M\left(\dfrac{1}{R_{1}}-\dfrac{1}{R_{2}}\right)\)
PHXI08:GRAVITATION

359707 Match the Column I and Column II
supporting img

(Where \(a = \) radius of planet orbit, \(r = \) radius of planet, \(M = \) mass of Sun, \(m = \) mass of planet). Choose the correct answer from the options given below.

1 A - P, B - Q, C - R, D - S
2 A - P, B - S, C - Q, D - R
3 A - R, B - S, C - P, D - Q
4 A - Q, B - P, C - S, D - R
PHXI08:GRAVITATION

359708 What is the minimum energy required to launch a satellite of mass \(m\) from the surface of a planet of mass \(M\) and radius \(R\) in a circular orbit at an altitude of \(2 R\) ?

1 \(\dfrac{5 G m M}{6 R}\)
2 \(\dfrac{G m M}{3 R}\)
3 \(\dfrac{2 G m M}{3 R}\)
4 \(\dfrac{G m M}{2 R}\)
PHXI08:GRAVITATION

359709 The minimum energy required to launch a satellite of mass \({m}\) from the surface of earth of mass \({M}\) and radius \({R}\) in a circular orbit at an altitude of \({2 R}\) from the surface of the earth is:

1 \({\dfrac{5 G m M}{6 R}}\)
2 \({\dfrac{2 G m M}{3 R}}\)
3 \({\dfrac{G m M}{2 R}}\)
4 \({\dfrac{G m M}{3 R}}\)
PHXI08:GRAVITATION

359706 The additional kinetic energy to be provided to a satellite of mass \(m\) revolving around a planet of mass \(M\), to transfer it from a circular orbit of radius \(R_{1}\) to another of radius \(R_{2}\left(R_{2}>R_{1}\right)\) is

1 \(GmM\left( {\frac{1}{{{R_1}}} - \frac{1}{{{R_2}}}} \right)\)
2 \(G m M\left(\dfrac{1}{R_{1}^{2}}-\dfrac{1}{R_{2}^{2}}\right)\)
3 \(\dfrac{1}{2} G m M\left(\dfrac{1}{R_{1}}-\dfrac{1}{R_{2}}\right)\)
4 \(2 G m M\left(\dfrac{1}{R_{1}}-\dfrac{1}{R_{2}}\right)\)
PHXI08:GRAVITATION

359707 Match the Column I and Column II
supporting img

(Where \(a = \) radius of planet orbit, \(r = \) radius of planet, \(M = \) mass of Sun, \(m = \) mass of planet). Choose the correct answer from the options given below.

1 A - P, B - Q, C - R, D - S
2 A - P, B - S, C - Q, D - R
3 A - R, B - S, C - P, D - Q
4 A - Q, B - P, C - S, D - R
PHXI08:GRAVITATION

359708 What is the minimum energy required to launch a satellite of mass \(m\) from the surface of a planet of mass \(M\) and radius \(R\) in a circular orbit at an altitude of \(2 R\) ?

1 \(\dfrac{5 G m M}{6 R}\)
2 \(\dfrac{G m M}{3 R}\)
3 \(\dfrac{2 G m M}{3 R}\)
4 \(\dfrac{G m M}{2 R}\)
PHXI08:GRAVITATION

359709 The minimum energy required to launch a satellite of mass \({m}\) from the surface of earth of mass \({M}\) and radius \({R}\) in a circular orbit at an altitude of \({2 R}\) from the surface of the earth is:

1 \({\dfrac{5 G m M}{6 R}}\)
2 \({\dfrac{2 G m M}{3 R}}\)
3 \({\dfrac{G m M}{2 R}}\)
4 \({\dfrac{G m M}{3 R}}\)