Refraction at plane surface
PHXII09:RAY OPTICS AND OPTICAL INSTRUMENTS

365001 If angle of incidence is twice the angle of refraction in a medium of refractive index \(\mu \) , then angle of incidence:

1 \(2{\sin ^{ - 1}}\frac{\mu }{2}\)
2 \(2{\cos ^{ - 1}}\frac{\mu }{2}\)
3 \(2{\sin ^{ - 1}}\mu \)
4 \(2{\cos ^{ - 1}}\mu \)
PHXII09:RAY OPTICS AND OPTICAL INSTRUMENTS

365002 For a colour of light the wavelength in air is \(6000\,\mathop {{\rm{ }}A}\limits^{\;\;^\circ } \) and in water the wavelength is \(4500\,\mathop {{\rm{ }}A}\limits^{\;\;^\circ } \). Then the speed of light in water will be:

1 \(5 \times {10^{14}}\;m{\rm{/}}s\)
2 \(2.25 \times {10^{8}}\;m{\rm{/}}s\)
3 \(4 \times {10^{8}}\;m{\rm{/}}s\)
4 \({\rm{Zero}}\)
PHXII09:RAY OPTICS AND OPTICAL INSTRUMENTS

365003 A ray of light is incident on the surface of a glass plate of thickness \(t\). If the angle of incidence \(\theta\) is small, the emerging ray would be displaced side ways by an amount (take, \(n=\) refractive index of glass)

1 \(\dfrac{t \theta n}{(n+1)}\)
2 \(\dfrac{t \theta(n-1)}{n}\)
3 \(\dfrac{t \theta n}{(n-1)}\)
4 \(\dfrac{t \theta(n+1)}{n}\)
PHXII09:RAY OPTICS AND OPTICAL INSTRUMENTS

365004 Monochromatic light of wavelength \(\left( {{\lambda _1}} \right)\) travelling in medium of refractive index \(({n_1})\) enters a denser medium of refractive index \(({n_2}).\) The wavelength in the second medium is

1 \({\lambda _1}\left( {\frac{{{n_2}}}{{{n_1}}}} \right)\)
2 \({\lambda _1}\left( {\frac{{{n_1}}}{{{n_2}}}} \right)\)
3 \({\lambda _1}\left( {\frac{{{n_2} - {n_1}}}{{{n_1}}}} \right) \le \)
4 \({\lambda _1}\)
PHXII09:RAY OPTICS AND OPTICAL INSTRUMENTS

365001 If angle of incidence is twice the angle of refraction in a medium of refractive index \(\mu \) , then angle of incidence:

1 \(2{\sin ^{ - 1}}\frac{\mu }{2}\)
2 \(2{\cos ^{ - 1}}\frac{\mu }{2}\)
3 \(2{\sin ^{ - 1}}\mu \)
4 \(2{\cos ^{ - 1}}\mu \)
PHXII09:RAY OPTICS AND OPTICAL INSTRUMENTS

365002 For a colour of light the wavelength in air is \(6000\,\mathop {{\rm{ }}A}\limits^{\;\;^\circ } \) and in water the wavelength is \(4500\,\mathop {{\rm{ }}A}\limits^{\;\;^\circ } \). Then the speed of light in water will be:

1 \(5 \times {10^{14}}\;m{\rm{/}}s\)
2 \(2.25 \times {10^{8}}\;m{\rm{/}}s\)
3 \(4 \times {10^{8}}\;m{\rm{/}}s\)
4 \({\rm{Zero}}\)
PHXII09:RAY OPTICS AND OPTICAL INSTRUMENTS

365003 A ray of light is incident on the surface of a glass plate of thickness \(t\). If the angle of incidence \(\theta\) is small, the emerging ray would be displaced side ways by an amount (take, \(n=\) refractive index of glass)

1 \(\dfrac{t \theta n}{(n+1)}\)
2 \(\dfrac{t \theta(n-1)}{n}\)
3 \(\dfrac{t \theta n}{(n-1)}\)
4 \(\dfrac{t \theta(n+1)}{n}\)
PHXII09:RAY OPTICS AND OPTICAL INSTRUMENTS

365004 Monochromatic light of wavelength \(\left( {{\lambda _1}} \right)\) travelling in medium of refractive index \(({n_1})\) enters a denser medium of refractive index \(({n_2}).\) The wavelength in the second medium is

1 \({\lambda _1}\left( {\frac{{{n_2}}}{{{n_1}}}} \right)\)
2 \({\lambda _1}\left( {\frac{{{n_1}}}{{{n_2}}}} \right)\)
3 \({\lambda _1}\left( {\frac{{{n_2} - {n_1}}}{{{n_1}}}} \right) \le \)
4 \({\lambda _1}\)
PHXII09:RAY OPTICS AND OPTICAL INSTRUMENTS

365001 If angle of incidence is twice the angle of refraction in a medium of refractive index \(\mu \) , then angle of incidence:

1 \(2{\sin ^{ - 1}}\frac{\mu }{2}\)
2 \(2{\cos ^{ - 1}}\frac{\mu }{2}\)
3 \(2{\sin ^{ - 1}}\mu \)
4 \(2{\cos ^{ - 1}}\mu \)
PHXII09:RAY OPTICS AND OPTICAL INSTRUMENTS

365002 For a colour of light the wavelength in air is \(6000\,\mathop {{\rm{ }}A}\limits^{\;\;^\circ } \) and in water the wavelength is \(4500\,\mathop {{\rm{ }}A}\limits^{\;\;^\circ } \). Then the speed of light in water will be:

1 \(5 \times {10^{14}}\;m{\rm{/}}s\)
2 \(2.25 \times {10^{8}}\;m{\rm{/}}s\)
3 \(4 \times {10^{8}}\;m{\rm{/}}s\)
4 \({\rm{Zero}}\)
PHXII09:RAY OPTICS AND OPTICAL INSTRUMENTS

365003 A ray of light is incident on the surface of a glass plate of thickness \(t\). If the angle of incidence \(\theta\) is small, the emerging ray would be displaced side ways by an amount (take, \(n=\) refractive index of glass)

1 \(\dfrac{t \theta n}{(n+1)}\)
2 \(\dfrac{t \theta(n-1)}{n}\)
3 \(\dfrac{t \theta n}{(n-1)}\)
4 \(\dfrac{t \theta(n+1)}{n}\)
PHXII09:RAY OPTICS AND OPTICAL INSTRUMENTS

365004 Monochromatic light of wavelength \(\left( {{\lambda _1}} \right)\) travelling in medium of refractive index \(({n_1})\) enters a denser medium of refractive index \(({n_2}).\) The wavelength in the second medium is

1 \({\lambda _1}\left( {\frac{{{n_2}}}{{{n_1}}}} \right)\)
2 \({\lambda _1}\left( {\frac{{{n_1}}}{{{n_2}}}} \right)\)
3 \({\lambda _1}\left( {\frac{{{n_2} - {n_1}}}{{{n_1}}}} \right) \le \)
4 \({\lambda _1}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
PHXII09:RAY OPTICS AND OPTICAL INSTRUMENTS

365001 If angle of incidence is twice the angle of refraction in a medium of refractive index \(\mu \) , then angle of incidence:

1 \(2{\sin ^{ - 1}}\frac{\mu }{2}\)
2 \(2{\cos ^{ - 1}}\frac{\mu }{2}\)
3 \(2{\sin ^{ - 1}}\mu \)
4 \(2{\cos ^{ - 1}}\mu \)
PHXII09:RAY OPTICS AND OPTICAL INSTRUMENTS

365002 For a colour of light the wavelength in air is \(6000\,\mathop {{\rm{ }}A}\limits^{\;\;^\circ } \) and in water the wavelength is \(4500\,\mathop {{\rm{ }}A}\limits^{\;\;^\circ } \). Then the speed of light in water will be:

1 \(5 \times {10^{14}}\;m{\rm{/}}s\)
2 \(2.25 \times {10^{8}}\;m{\rm{/}}s\)
3 \(4 \times {10^{8}}\;m{\rm{/}}s\)
4 \({\rm{Zero}}\)
PHXII09:RAY OPTICS AND OPTICAL INSTRUMENTS

365003 A ray of light is incident on the surface of a glass plate of thickness \(t\). If the angle of incidence \(\theta\) is small, the emerging ray would be displaced side ways by an amount (take, \(n=\) refractive index of glass)

1 \(\dfrac{t \theta n}{(n+1)}\)
2 \(\dfrac{t \theta(n-1)}{n}\)
3 \(\dfrac{t \theta n}{(n-1)}\)
4 \(\dfrac{t \theta(n+1)}{n}\)
PHXII09:RAY OPTICS AND OPTICAL INSTRUMENTS

365004 Monochromatic light of wavelength \(\left( {{\lambda _1}} \right)\) travelling in medium of refractive index \(({n_1})\) enters a denser medium of refractive index \(({n_2}).\) The wavelength in the second medium is

1 \({\lambda _1}\left( {\frac{{{n_2}}}{{{n_1}}}} \right)\)
2 \({\lambda _1}\left( {\frac{{{n_1}}}{{{n_2}}}} \right)\)
3 \({\lambda _1}\left( {\frac{{{n_2} - {n_1}}}{{{n_1}}}} \right) \le \)
4 \({\lambda _1}\)