365002
For a colour of light the wavelength in air is \(6000\,\mathop {{\rm{ }}A}\limits^{\;\;^\circ } \) and in water the wavelength is \(4500\,\mathop {{\rm{ }}A}\limits^{\;\;^\circ } \). Then the speed of light in water will be:
365003
A ray of light is incident on the surface of a glass plate of thickness \(t\). If the angle of incidence \(\theta\) is small, the emerging ray would be displaced side ways by an amount (take, \(n=\) refractive index of glass)
1 \(\dfrac{t \theta n}{(n+1)}\)
2 \(\dfrac{t \theta(n-1)}{n}\)
3 \(\dfrac{t \theta n}{(n-1)}\)
4 \(\dfrac{t \theta(n+1)}{n}\)
Explanation:
If \(\theta\) is small \(\sin \theta \cong \theta\) and \(\cos \theta \cong 1\) \(\Rightarrow \mu=\dfrac{\sin i}{\sin r}=\dfrac{i}{r} \Rightarrow r=\dfrac{i}{\mu}\) \(x=\dfrac{t \sin (i-r)}{\cos r}=\dfrac{t(i-r)}{1}\) \(\Rightarrow t i-\dfrac{i}{\mu}=t i\left(\dfrac{\mu-1}{\mu}\right)\) \(i=\theta, \mu=n\) \(\Rightarrow x=\dfrac{t \theta(n-1)}{n}\)
AIIMS - 2007
PHXII09:RAY OPTICS AND OPTICAL INSTRUMENTS
365004
Monochromatic light of wavelength \(\left( {{\lambda _1}} \right)\) travelling in medium of refractive index \(({n_1})\) enters a denser medium of refractive index \(({n_2}).\) The wavelength in the second medium is
365002
For a colour of light the wavelength in air is \(6000\,\mathop {{\rm{ }}A}\limits^{\;\;^\circ } \) and in water the wavelength is \(4500\,\mathop {{\rm{ }}A}\limits^{\;\;^\circ } \). Then the speed of light in water will be:
365003
A ray of light is incident on the surface of a glass plate of thickness \(t\). If the angle of incidence \(\theta\) is small, the emerging ray would be displaced side ways by an amount (take, \(n=\) refractive index of glass)
1 \(\dfrac{t \theta n}{(n+1)}\)
2 \(\dfrac{t \theta(n-1)}{n}\)
3 \(\dfrac{t \theta n}{(n-1)}\)
4 \(\dfrac{t \theta(n+1)}{n}\)
Explanation:
If \(\theta\) is small \(\sin \theta \cong \theta\) and \(\cos \theta \cong 1\) \(\Rightarrow \mu=\dfrac{\sin i}{\sin r}=\dfrac{i}{r} \Rightarrow r=\dfrac{i}{\mu}\) \(x=\dfrac{t \sin (i-r)}{\cos r}=\dfrac{t(i-r)}{1}\) \(\Rightarrow t i-\dfrac{i}{\mu}=t i\left(\dfrac{\mu-1}{\mu}\right)\) \(i=\theta, \mu=n\) \(\Rightarrow x=\dfrac{t \theta(n-1)}{n}\)
AIIMS - 2007
PHXII09:RAY OPTICS AND OPTICAL INSTRUMENTS
365004
Monochromatic light of wavelength \(\left( {{\lambda _1}} \right)\) travelling in medium of refractive index \(({n_1})\) enters a denser medium of refractive index \(({n_2}).\) The wavelength in the second medium is
365002
For a colour of light the wavelength in air is \(6000\,\mathop {{\rm{ }}A}\limits^{\;\;^\circ } \) and in water the wavelength is \(4500\,\mathop {{\rm{ }}A}\limits^{\;\;^\circ } \). Then the speed of light in water will be:
365003
A ray of light is incident on the surface of a glass plate of thickness \(t\). If the angle of incidence \(\theta\) is small, the emerging ray would be displaced side ways by an amount (take, \(n=\) refractive index of glass)
1 \(\dfrac{t \theta n}{(n+1)}\)
2 \(\dfrac{t \theta(n-1)}{n}\)
3 \(\dfrac{t \theta n}{(n-1)}\)
4 \(\dfrac{t \theta(n+1)}{n}\)
Explanation:
If \(\theta\) is small \(\sin \theta \cong \theta\) and \(\cos \theta \cong 1\) \(\Rightarrow \mu=\dfrac{\sin i}{\sin r}=\dfrac{i}{r} \Rightarrow r=\dfrac{i}{\mu}\) \(x=\dfrac{t \sin (i-r)}{\cos r}=\dfrac{t(i-r)}{1}\) \(\Rightarrow t i-\dfrac{i}{\mu}=t i\left(\dfrac{\mu-1}{\mu}\right)\) \(i=\theta, \mu=n\) \(\Rightarrow x=\dfrac{t \theta(n-1)}{n}\)
AIIMS - 2007
PHXII09:RAY OPTICS AND OPTICAL INSTRUMENTS
365004
Monochromatic light of wavelength \(\left( {{\lambda _1}} \right)\) travelling in medium of refractive index \(({n_1})\) enters a denser medium of refractive index \(({n_2}).\) The wavelength in the second medium is
365002
For a colour of light the wavelength in air is \(6000\,\mathop {{\rm{ }}A}\limits^{\;\;^\circ } \) and in water the wavelength is \(4500\,\mathop {{\rm{ }}A}\limits^{\;\;^\circ } \). Then the speed of light in water will be:
365003
A ray of light is incident on the surface of a glass plate of thickness \(t\). If the angle of incidence \(\theta\) is small, the emerging ray would be displaced side ways by an amount (take, \(n=\) refractive index of glass)
1 \(\dfrac{t \theta n}{(n+1)}\)
2 \(\dfrac{t \theta(n-1)}{n}\)
3 \(\dfrac{t \theta n}{(n-1)}\)
4 \(\dfrac{t \theta(n+1)}{n}\)
Explanation:
If \(\theta\) is small \(\sin \theta \cong \theta\) and \(\cos \theta \cong 1\) \(\Rightarrow \mu=\dfrac{\sin i}{\sin r}=\dfrac{i}{r} \Rightarrow r=\dfrac{i}{\mu}\) \(x=\dfrac{t \sin (i-r)}{\cos r}=\dfrac{t(i-r)}{1}\) \(\Rightarrow t i-\dfrac{i}{\mu}=t i\left(\dfrac{\mu-1}{\mu}\right)\) \(i=\theta, \mu=n\) \(\Rightarrow x=\dfrac{t \theta(n-1)}{n}\)
AIIMS - 2007
PHXII09:RAY OPTICS AND OPTICAL INSTRUMENTS
365004
Monochromatic light of wavelength \(\left( {{\lambda _1}} \right)\) travelling in medium of refractive index \(({n_1})\) enters a denser medium of refractive index \(({n_2}).\) The wavelength in the second medium is