Super Position of SHM’s
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
PHXI14:OSCILLATIONS

364520 Consider two SHMs along the same straight line \(x_{1}=A_{1} \sin \left(\omega t+\phi_{1}\right), x_{2}=A_{2} \sin \left(\omega t+\phi_{2}\right)\), where \(A_{1}\) and \(A_{2}\) are their amplitudes and \(\phi_{1}\) and \(\phi_{2}\) are their initial phase angle. If the two SHMs meet simultaneously and ' \(R\) ' is the resultant amplitude, match column I with column II.
supporting img

1 \(\mathrm{A}-\mathrm{R}, \quad \mathrm{B}-\mathrm{P}, \quad \mathrm{C}-\mathrm{S}, \quad \mathrm{D}-\mathrm{Q}\)
2 \(\mathrm{A}-\mathrm{S}, \quad \mathrm{B}-\mathrm{R}, \quad \mathrm{C}-\mathrm{Q}, \quad \mathrm{D}-\mathrm{P}\)
3 \(\mathrm{A}-\mathrm{P}, \quad \mathrm{B}-\mathrm{R}, \quad \mathrm{C}-\mathrm{Q}, \quad \mathrm{D}-\mathrm{S}\)
4 \(\mathrm{A}-\mathrm{R}, \quad \mathrm{B}-\mathrm{S}, \quad \mathrm{C}-\mathrm{P}, \quad \mathrm{D}-\mathrm{Q}\)
PHXI14:OSCILLATIONS

364521 For a periodic motion represented by the equation \(y=\sin \omega t+\cos \omega t\), the amplitude of the motion is

1 \(\sqrt{2}\)
2 2
3 0.5
4 1
PHXI14:OSCILLATIONS

364522 The composition of two simple harmonic motions of equal periods at right angle to each others and with a phase difference of \(\pi\) results in the displacement of the particle along.

1 Circle
2 Figure of Eight
3 Straight line
4 Ellipse
PHXI14:OSCILLATIONS

364523 The resultant amplitude due to superposition of three simple harmonic motions \({y_1} = 3\sin \omega t{\mkern 1mu} {\mkern 1mu} {y_2} = 5\sin \omega t + {37^{\rm{o}}}\) and \({y_3} = - 15\cos \omega t\) is ____.

1 \(\sqrt{193}\)
2 \(\sqrt{73}\)
3 \(8 \sqrt{2}\)
4 \(7 \sqrt{3}\)
PHXI14:OSCILLATIONS

364520 Consider two SHMs along the same straight line \(x_{1}=A_{1} \sin \left(\omega t+\phi_{1}\right), x_{2}=A_{2} \sin \left(\omega t+\phi_{2}\right)\), where \(A_{1}\) and \(A_{2}\) are their amplitudes and \(\phi_{1}\) and \(\phi_{2}\) are their initial phase angle. If the two SHMs meet simultaneously and ' \(R\) ' is the resultant amplitude, match column I with column II.
supporting img

1 \(\mathrm{A}-\mathrm{R}, \quad \mathrm{B}-\mathrm{P}, \quad \mathrm{C}-\mathrm{S}, \quad \mathrm{D}-\mathrm{Q}\)
2 \(\mathrm{A}-\mathrm{S}, \quad \mathrm{B}-\mathrm{R}, \quad \mathrm{C}-\mathrm{Q}, \quad \mathrm{D}-\mathrm{P}\)
3 \(\mathrm{A}-\mathrm{P}, \quad \mathrm{B}-\mathrm{R}, \quad \mathrm{C}-\mathrm{Q}, \quad \mathrm{D}-\mathrm{S}\)
4 \(\mathrm{A}-\mathrm{R}, \quad \mathrm{B}-\mathrm{S}, \quad \mathrm{C}-\mathrm{P}, \quad \mathrm{D}-\mathrm{Q}\)
PHXI14:OSCILLATIONS

364521 For a periodic motion represented by the equation \(y=\sin \omega t+\cos \omega t\), the amplitude of the motion is

1 \(\sqrt{2}\)
2 2
3 0.5
4 1
PHXI14:OSCILLATIONS

364522 The composition of two simple harmonic motions of equal periods at right angle to each others and with a phase difference of \(\pi\) results in the displacement of the particle along.

1 Circle
2 Figure of Eight
3 Straight line
4 Ellipse
PHXI14:OSCILLATIONS

364523 The resultant amplitude due to superposition of three simple harmonic motions \({y_1} = 3\sin \omega t{\mkern 1mu} {\mkern 1mu} {y_2} = 5\sin \omega t + {37^{\rm{o}}}\) and \({y_3} = - 15\cos \omega t\) is ____.

1 \(\sqrt{193}\)
2 \(\sqrt{73}\)
3 \(8 \sqrt{2}\)
4 \(7 \sqrt{3}\)
PHXI14:OSCILLATIONS

364520 Consider two SHMs along the same straight line \(x_{1}=A_{1} \sin \left(\omega t+\phi_{1}\right), x_{2}=A_{2} \sin \left(\omega t+\phi_{2}\right)\), where \(A_{1}\) and \(A_{2}\) are their amplitudes and \(\phi_{1}\) and \(\phi_{2}\) are their initial phase angle. If the two SHMs meet simultaneously and ' \(R\) ' is the resultant amplitude, match column I with column II.
supporting img

1 \(\mathrm{A}-\mathrm{R}, \quad \mathrm{B}-\mathrm{P}, \quad \mathrm{C}-\mathrm{S}, \quad \mathrm{D}-\mathrm{Q}\)
2 \(\mathrm{A}-\mathrm{S}, \quad \mathrm{B}-\mathrm{R}, \quad \mathrm{C}-\mathrm{Q}, \quad \mathrm{D}-\mathrm{P}\)
3 \(\mathrm{A}-\mathrm{P}, \quad \mathrm{B}-\mathrm{R}, \quad \mathrm{C}-\mathrm{Q}, \quad \mathrm{D}-\mathrm{S}\)
4 \(\mathrm{A}-\mathrm{R}, \quad \mathrm{B}-\mathrm{S}, \quad \mathrm{C}-\mathrm{P}, \quad \mathrm{D}-\mathrm{Q}\)
PHXI14:OSCILLATIONS

364521 For a periodic motion represented by the equation \(y=\sin \omega t+\cos \omega t\), the amplitude of the motion is

1 \(\sqrt{2}\)
2 2
3 0.5
4 1
PHXI14:OSCILLATIONS

364522 The composition of two simple harmonic motions of equal periods at right angle to each others and with a phase difference of \(\pi\) results in the displacement of the particle along.

1 Circle
2 Figure of Eight
3 Straight line
4 Ellipse
PHXI14:OSCILLATIONS

364523 The resultant amplitude due to superposition of three simple harmonic motions \({y_1} = 3\sin \omega t{\mkern 1mu} {\mkern 1mu} {y_2} = 5\sin \omega t + {37^{\rm{o}}}\) and \({y_3} = - 15\cos \omega t\) is ____.

1 \(\sqrt{193}\)
2 \(\sqrt{73}\)
3 \(8 \sqrt{2}\)
4 \(7 \sqrt{3}\)
PHXI14:OSCILLATIONS

364520 Consider two SHMs along the same straight line \(x_{1}=A_{1} \sin \left(\omega t+\phi_{1}\right), x_{2}=A_{2} \sin \left(\omega t+\phi_{2}\right)\), where \(A_{1}\) and \(A_{2}\) are their amplitudes and \(\phi_{1}\) and \(\phi_{2}\) are their initial phase angle. If the two SHMs meet simultaneously and ' \(R\) ' is the resultant amplitude, match column I with column II.
supporting img

1 \(\mathrm{A}-\mathrm{R}, \quad \mathrm{B}-\mathrm{P}, \quad \mathrm{C}-\mathrm{S}, \quad \mathrm{D}-\mathrm{Q}\)
2 \(\mathrm{A}-\mathrm{S}, \quad \mathrm{B}-\mathrm{R}, \quad \mathrm{C}-\mathrm{Q}, \quad \mathrm{D}-\mathrm{P}\)
3 \(\mathrm{A}-\mathrm{P}, \quad \mathrm{B}-\mathrm{R}, \quad \mathrm{C}-\mathrm{Q}, \quad \mathrm{D}-\mathrm{S}\)
4 \(\mathrm{A}-\mathrm{R}, \quad \mathrm{B}-\mathrm{S}, \quad \mathrm{C}-\mathrm{P}, \quad \mathrm{D}-\mathrm{Q}\)
PHXI14:OSCILLATIONS

364521 For a periodic motion represented by the equation \(y=\sin \omega t+\cos \omega t\), the amplitude of the motion is

1 \(\sqrt{2}\)
2 2
3 0.5
4 1
PHXI14:OSCILLATIONS

364522 The composition of two simple harmonic motions of equal periods at right angle to each others and with a phase difference of \(\pi\) results in the displacement of the particle along.

1 Circle
2 Figure of Eight
3 Straight line
4 Ellipse
PHXI14:OSCILLATIONS

364523 The resultant amplitude due to superposition of three simple harmonic motions \({y_1} = 3\sin \omega t{\mkern 1mu} {\mkern 1mu} {y_2} = 5\sin \omega t + {37^{\rm{o}}}\) and \({y_3} = - 15\cos \omega t\) is ____.

1 \(\sqrt{193}\)
2 \(\sqrt{73}\)
3 \(8 \sqrt{2}\)
4 \(7 \sqrt{3}\)