Chemical Reactions of Carboxylic Acids
CHXII12:ALDEHYDES KETONES AND CARBOXYLIC ACIDS

323769 The reagent suitable to convert \(\mathrm{D}\) to \(\mathrm{A}\) is
supporting img

1 \(\mathrm{KMnO}_{4}\)
2 \({\rm{Zn}}\,\,{\rm{dust}}\)
3 \(\mathrm{LAH}\)
4 \({\rm{Red}}{\mkern 1mu} {\mkern 1mu} {{\rm{P}}_{\rm{4}}}{\rm{/}}\,{\rm{HI}}\)
CHXII12:ALDEHYDES KETONES AND CARBOXYLIC ACIDS

323770 \(\begin{gathered}{\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH}}\xrightarrow{{{\text{LiAl}}{{\text{H}}_{\text{4}}}}}{\text{X}}\xrightarrow[{{\text{30}}{{\text{0}}^{\text{o}}}{\mkern 1mu} {\text{C}}}]{{{\text{Cu}}}}{\text{Y}}{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \hfill \\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\xrightarrow[{{\text{NaOH}}}]{{{\text{dilute}}}}{\text{Z}} \hfill \\ \end{gathered} \)
In the above reaction Z is

1 aldol
2 ketol
3 acetol
4 butanol
CHXII12:ALDEHYDES KETONES AND CARBOXYLIC ACIDS

323771 \({\text{C}}{{\text{H}}_{\text{3}}}{\text{ - C}} \equiv {\text{C - }}{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}\frac{{{\text{1}}{\text{.}}{{\text{O}}_{\text{3}}}{\text{/Cl}}{{\text{l}}_{\text{4}}}}}{{2 \cdot {{\text{H}}_{\text{2}}}{\text{O}}}}{\text{A + B}}\).
Product (A) forms polymer in liquid phase and forms dimer in Dry benzene. Product (B) gives \(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOCH}_{3}\) when reacts with Methanol. The molecular weight difference between A & \(\mathrm{B}\) is

1 14
2 12
3 16
4 18
CHXII12:ALDEHYDES KETONES AND CARBOXYLIC ACIDS

323772 \(\alpha\)-chloropropanoic acid on treatment with alcoholic \(\mathrm{KOH}\) followed by acidification gives:

1 \(\mathrm{CH}_{3}-\mathrm{CH}(\mathrm{OH})-\mathrm{COOH}\)
2 \(\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{COOH}\)
3 \(\mathrm{HO}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{COOH}\)
4 \(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{COOH}\)
CHXII12:ALDEHYDES KETONES AND CARBOXYLIC ACIDS

323769 The reagent suitable to convert \(\mathrm{D}\) to \(\mathrm{A}\) is
supporting img

1 \(\mathrm{KMnO}_{4}\)
2 \({\rm{Zn}}\,\,{\rm{dust}}\)
3 \(\mathrm{LAH}\)
4 \({\rm{Red}}{\mkern 1mu} {\mkern 1mu} {{\rm{P}}_{\rm{4}}}{\rm{/}}\,{\rm{HI}}\)
CHXII12:ALDEHYDES KETONES AND CARBOXYLIC ACIDS

323770 \(\begin{gathered}{\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH}}\xrightarrow{{{\text{LiAl}}{{\text{H}}_{\text{4}}}}}{\text{X}}\xrightarrow[{{\text{30}}{{\text{0}}^{\text{o}}}{\mkern 1mu} {\text{C}}}]{{{\text{Cu}}}}{\text{Y}}{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \hfill \\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\xrightarrow[{{\text{NaOH}}}]{{{\text{dilute}}}}{\text{Z}} \hfill \\ \end{gathered} \)
In the above reaction Z is

1 aldol
2 ketol
3 acetol
4 butanol
CHXII12:ALDEHYDES KETONES AND CARBOXYLIC ACIDS

323771 \({\text{C}}{{\text{H}}_{\text{3}}}{\text{ - C}} \equiv {\text{C - }}{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}\frac{{{\text{1}}{\text{.}}{{\text{O}}_{\text{3}}}{\text{/Cl}}{{\text{l}}_{\text{4}}}}}{{2 \cdot {{\text{H}}_{\text{2}}}{\text{O}}}}{\text{A + B}}\).
Product (A) forms polymer in liquid phase and forms dimer in Dry benzene. Product (B) gives \(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOCH}_{3}\) when reacts with Methanol. The molecular weight difference between A & \(\mathrm{B}\) is

1 14
2 12
3 16
4 18
CHXII12:ALDEHYDES KETONES AND CARBOXYLIC ACIDS

323772 \(\alpha\)-chloropropanoic acid on treatment with alcoholic \(\mathrm{KOH}\) followed by acidification gives:

1 \(\mathrm{CH}_{3}-\mathrm{CH}(\mathrm{OH})-\mathrm{COOH}\)
2 \(\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{COOH}\)
3 \(\mathrm{HO}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{COOH}\)
4 \(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{COOH}\)
CHXII12:ALDEHYDES KETONES AND CARBOXYLIC ACIDS

323769 The reagent suitable to convert \(\mathrm{D}\) to \(\mathrm{A}\) is
supporting img

1 \(\mathrm{KMnO}_{4}\)
2 \({\rm{Zn}}\,\,{\rm{dust}}\)
3 \(\mathrm{LAH}\)
4 \({\rm{Red}}{\mkern 1mu} {\mkern 1mu} {{\rm{P}}_{\rm{4}}}{\rm{/}}\,{\rm{HI}}\)
CHXII12:ALDEHYDES KETONES AND CARBOXYLIC ACIDS

323770 \(\begin{gathered}{\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH}}\xrightarrow{{{\text{LiAl}}{{\text{H}}_{\text{4}}}}}{\text{X}}\xrightarrow[{{\text{30}}{{\text{0}}^{\text{o}}}{\mkern 1mu} {\text{C}}}]{{{\text{Cu}}}}{\text{Y}}{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \hfill \\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\xrightarrow[{{\text{NaOH}}}]{{{\text{dilute}}}}{\text{Z}} \hfill \\ \end{gathered} \)
In the above reaction Z is

1 aldol
2 ketol
3 acetol
4 butanol
CHXII12:ALDEHYDES KETONES AND CARBOXYLIC ACIDS

323771 \({\text{C}}{{\text{H}}_{\text{3}}}{\text{ - C}} \equiv {\text{C - }}{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}\frac{{{\text{1}}{\text{.}}{{\text{O}}_{\text{3}}}{\text{/Cl}}{{\text{l}}_{\text{4}}}}}{{2 \cdot {{\text{H}}_{\text{2}}}{\text{O}}}}{\text{A + B}}\).
Product (A) forms polymer in liquid phase and forms dimer in Dry benzene. Product (B) gives \(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOCH}_{3}\) when reacts with Methanol. The molecular weight difference between A & \(\mathrm{B}\) is

1 14
2 12
3 16
4 18
CHXII12:ALDEHYDES KETONES AND CARBOXYLIC ACIDS

323772 \(\alpha\)-chloropropanoic acid on treatment with alcoholic \(\mathrm{KOH}\) followed by acidification gives:

1 \(\mathrm{CH}_{3}-\mathrm{CH}(\mathrm{OH})-\mathrm{COOH}\)
2 \(\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{COOH}\)
3 \(\mathrm{HO}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{COOH}\)
4 \(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{COOH}\)
CHXII12:ALDEHYDES KETONES AND CARBOXYLIC ACIDS

323769 The reagent suitable to convert \(\mathrm{D}\) to \(\mathrm{A}\) is
supporting img

1 \(\mathrm{KMnO}_{4}\)
2 \({\rm{Zn}}\,\,{\rm{dust}}\)
3 \(\mathrm{LAH}\)
4 \({\rm{Red}}{\mkern 1mu} {\mkern 1mu} {{\rm{P}}_{\rm{4}}}{\rm{/}}\,{\rm{HI}}\)
CHXII12:ALDEHYDES KETONES AND CARBOXYLIC ACIDS

323770 \(\begin{gathered}{\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH}}\xrightarrow{{{\text{LiAl}}{{\text{H}}_{\text{4}}}}}{\text{X}}\xrightarrow[{{\text{30}}{{\text{0}}^{\text{o}}}{\mkern 1mu} {\text{C}}}]{{{\text{Cu}}}}{\text{Y}}{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \hfill \\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\xrightarrow[{{\text{NaOH}}}]{{{\text{dilute}}}}{\text{Z}} \hfill \\ \end{gathered} \)
In the above reaction Z is

1 aldol
2 ketol
3 acetol
4 butanol
CHXII12:ALDEHYDES KETONES AND CARBOXYLIC ACIDS

323771 \({\text{C}}{{\text{H}}_{\text{3}}}{\text{ - C}} \equiv {\text{C - }}{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}\frac{{{\text{1}}{\text{.}}{{\text{O}}_{\text{3}}}{\text{/Cl}}{{\text{l}}_{\text{4}}}}}{{2 \cdot {{\text{H}}_{\text{2}}}{\text{O}}}}{\text{A + B}}\).
Product (A) forms polymer in liquid phase and forms dimer in Dry benzene. Product (B) gives \(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOCH}_{3}\) when reacts with Methanol. The molecular weight difference between A & \(\mathrm{B}\) is

1 14
2 12
3 16
4 18
CHXII12:ALDEHYDES KETONES AND CARBOXYLIC ACIDS

323772 \(\alpha\)-chloropropanoic acid on treatment with alcoholic \(\mathrm{KOH}\) followed by acidification gives:

1 \(\mathrm{CH}_{3}-\mathrm{CH}(\mathrm{OH})-\mathrm{COOH}\)
2 \(\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{COOH}\)
3 \(\mathrm{HO}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{COOH}\)
4 \(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{COOH}\)