320581 Consider a general chemical change \({\rm{2\;A + 3\;B}} \to \) Products. The rate of consumption of \({\rm{A}}{\mkern 1mu} {\mkern 1mu} {\rm{is}}\,\,{{\rm{r}}_{\rm{1}}}\) and that of consumption of \({\rm{B}}\,\,{\rm{is}}\,\,{{\rm{r}}_{\rm{2}}}\). The rate \({{\rm{r}}_{\rm{1}}}\,\,{\rm{and}}\,\,{{\rm{r}}_{\rm{2}}}\) are related as
320584 In the reaction of formation of sulphur trioxide by contact process, \(2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{3}\), the rate reaction was measured as \(\dfrac{\mathrm{d}\left[\mathrm{O}_{2}\right]}{\mathrm{dt}}=-2.5 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\). The rate of reaction in terms of \(\left[\mathrm{SO}_{2}\right]\) in \({\rm{mol}}{\mkern 1mu} {{\rm{L}}^{{\rm{ - 1}}}}\;{{\rm{s}}^{{\rm{ - 1}}}}\) will be
320581 Consider a general chemical change \({\rm{2\;A + 3\;B}} \to \) Products. The rate of consumption of \({\rm{A}}{\mkern 1mu} {\mkern 1mu} {\rm{is}}\,\,{{\rm{r}}_{\rm{1}}}\) and that of consumption of \({\rm{B}}\,\,{\rm{is}}\,\,{{\rm{r}}_{\rm{2}}}\). The rate \({{\rm{r}}_{\rm{1}}}\,\,{\rm{and}}\,\,{{\rm{r}}_{\rm{2}}}\) are related as
320584 In the reaction of formation of sulphur trioxide by contact process, \(2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{3}\), the rate reaction was measured as \(\dfrac{\mathrm{d}\left[\mathrm{O}_{2}\right]}{\mathrm{dt}}=-2.5 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\). The rate of reaction in terms of \(\left[\mathrm{SO}_{2}\right]\) in \({\rm{mol}}{\mkern 1mu} {{\rm{L}}^{{\rm{ - 1}}}}\;{{\rm{s}}^{{\rm{ - 1}}}}\) will be
320581 Consider a general chemical change \({\rm{2\;A + 3\;B}} \to \) Products. The rate of consumption of \({\rm{A}}{\mkern 1mu} {\mkern 1mu} {\rm{is}}\,\,{{\rm{r}}_{\rm{1}}}\) and that of consumption of \({\rm{B}}\,\,{\rm{is}}\,\,{{\rm{r}}_{\rm{2}}}\). The rate \({{\rm{r}}_{\rm{1}}}\,\,{\rm{and}}\,\,{{\rm{r}}_{\rm{2}}}\) are related as
320584 In the reaction of formation of sulphur trioxide by contact process, \(2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{3}\), the rate reaction was measured as \(\dfrac{\mathrm{d}\left[\mathrm{O}_{2}\right]}{\mathrm{dt}}=-2.5 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\). The rate of reaction in terms of \(\left[\mathrm{SO}_{2}\right]\) in \({\rm{mol}}{\mkern 1mu} {{\rm{L}}^{{\rm{ - 1}}}}\;{{\rm{s}}^{{\rm{ - 1}}}}\) will be
320581 Consider a general chemical change \({\rm{2\;A + 3\;B}} \to \) Products. The rate of consumption of \({\rm{A}}{\mkern 1mu} {\mkern 1mu} {\rm{is}}\,\,{{\rm{r}}_{\rm{1}}}\) and that of consumption of \({\rm{B}}\,\,{\rm{is}}\,\,{{\rm{r}}_{\rm{2}}}\). The rate \({{\rm{r}}_{\rm{1}}}\,\,{\rm{and}}\,\,{{\rm{r}}_{\rm{2}}}\) are related as
320584 In the reaction of formation of sulphur trioxide by contact process, \(2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{3}\), the rate reaction was measured as \(\dfrac{\mathrm{d}\left[\mathrm{O}_{2}\right]}{\mathrm{dt}}=-2.5 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\). The rate of reaction in terms of \(\left[\mathrm{SO}_{2}\right]\) in \({\rm{mol}}{\mkern 1mu} {{\rm{L}}^{{\rm{ - 1}}}}\;{{\rm{s}}^{{\rm{ - 1}}}}\) will be
320581 Consider a general chemical change \({\rm{2\;A + 3\;B}} \to \) Products. The rate of consumption of \({\rm{A}}{\mkern 1mu} {\mkern 1mu} {\rm{is}}\,\,{{\rm{r}}_{\rm{1}}}\) and that of consumption of \({\rm{B}}\,\,{\rm{is}}\,\,{{\rm{r}}_{\rm{2}}}\). The rate \({{\rm{r}}_{\rm{1}}}\,\,{\rm{and}}\,\,{{\rm{r}}_{\rm{2}}}\) are related as
320584 In the reaction of formation of sulphur trioxide by contact process, \(2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{3}\), the rate reaction was measured as \(\dfrac{\mathrm{d}\left[\mathrm{O}_{2}\right]}{\mathrm{dt}}=-2.5 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\). The rate of reaction in terms of \(\left[\mathrm{SO}_{2}\right]\) in \({\rm{mol}}{\mkern 1mu} {{\rm{L}}^{{\rm{ - 1}}}}\;{{\rm{s}}^{{\rm{ - 1}}}}\) will be