Methods to Determine Order of Reaction
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
CHXII04:CHEMICAL KINETICS

320498 For the non-stoichiometric reaction,
\({\text{2A + B}} \to {\text{C + D}}\), the following kinetic data were obtained in three separate experiments, all at \(298 \mathrm{~K}\).
\(\begin{array}{lcll}\text { Expt. } & {[\mathrm{A}] \mathrm{M}} & {[\mathrm{B}] \mathrm{M}} & \text { Rate }(\mathrm{M} / \mathrm{s}) \\ 1 & 0.1 & 0.1 & 1.2 \times 10^{-3} \\ 2 & 0.1 & 0.2 & 1.2 \times 10^{-3} \\ 3 & 0.2 & 0.1 & 2.4 \times 10^{-3}\end{array}\)
The rate law for formation of \(\mathrm{C}\) is

1 \(\frac{{{\text{dC}}}}{{{\text{dt}}}}{\text{ = k[A]}}\)
2 \(\frac{{{\text{dC}}}}{{{\text{dt}}}}{\text{ = k[A}}{{\text{]}}^{\text{2}}}{\text{[B]}}\)
3 \(\frac{{{\text{dC}}}}{{{\text{dt}}}}{\text{ = k[A][B]}}\)
4 \(\frac{{{\text{dC}}}}{{{\text{dt}}}}{\text{ = k[A][B}}{{\text{]}}^{\text{2}}}\)
CHXII04:CHEMICAL KINETICS

320499 The half life of a given reaction is doubled if the initial concentration of the reactant is doubled. The order of the reaction is

1 0
2 1
3 2
4 3
CHXII04:CHEMICAL KINETICS

320500 The reaction \(\mathrm{A} \rightarrow \mathrm{B}\) is started with \(10 \mathrm{~g}\) of \(\mathrm{A}\). After 30 and 90 minutes, \(5 \mathrm{~g}\) and \(1.25 \mathrm{~g}\) of \(\mathrm{A}\) is left, respectively. The order of reaction is

1 0
2 2
3 1
4 3
CHXII04:CHEMICAL KINETICS

320501 For a chemical reaction \(\mathrm{A} \rightarrow \mathrm{B}\), the rate of the reaction is \(2 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\), when the initial concentration is 0.05 \({\rm{mol}}\,\,{\rm{d}}{{\rm{m}}^{{\rm{ - 3}}}}\,{{\rm{s}}^{{\rm{ - 1}}}}\). The rate of the same reaction is \({\rm{1}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{ - 2}}}}\,\,{\rm{mol}}\,{\rm{d}}{{\rm{m}}^{{\rm{ - 3}}}}\,{{\rm{s}}^{{\rm{ - 1}}}}\) when the initial concentration is \({\rm{0}}{\rm{.1}}\,{\rm{mol}}\,{\rm{d}}{{\rm{m}}^{{\rm{ - 3}}}}{\rm{.}}\) The order of the reaction is

1 0
2 3
3 1
4 2
CHXII04:CHEMICAL KINETICS

320498 For the non-stoichiometric reaction,
\({\text{2A + B}} \to {\text{C + D}}\), the following kinetic data were obtained in three separate experiments, all at \(298 \mathrm{~K}\).
\(\begin{array}{lcll}\text { Expt. } & {[\mathrm{A}] \mathrm{M}} & {[\mathrm{B}] \mathrm{M}} & \text { Rate }(\mathrm{M} / \mathrm{s}) \\ 1 & 0.1 & 0.1 & 1.2 \times 10^{-3} \\ 2 & 0.1 & 0.2 & 1.2 \times 10^{-3} \\ 3 & 0.2 & 0.1 & 2.4 \times 10^{-3}\end{array}\)
The rate law for formation of \(\mathrm{C}\) is

1 \(\frac{{{\text{dC}}}}{{{\text{dt}}}}{\text{ = k[A]}}\)
2 \(\frac{{{\text{dC}}}}{{{\text{dt}}}}{\text{ = k[A}}{{\text{]}}^{\text{2}}}{\text{[B]}}\)
3 \(\frac{{{\text{dC}}}}{{{\text{dt}}}}{\text{ = k[A][B]}}\)
4 \(\frac{{{\text{dC}}}}{{{\text{dt}}}}{\text{ = k[A][B}}{{\text{]}}^{\text{2}}}\)
CHXII04:CHEMICAL KINETICS

320499 The half life of a given reaction is doubled if the initial concentration of the reactant is doubled. The order of the reaction is

1 0
2 1
3 2
4 3
CHXII04:CHEMICAL KINETICS

320500 The reaction \(\mathrm{A} \rightarrow \mathrm{B}\) is started with \(10 \mathrm{~g}\) of \(\mathrm{A}\). After 30 and 90 minutes, \(5 \mathrm{~g}\) and \(1.25 \mathrm{~g}\) of \(\mathrm{A}\) is left, respectively. The order of reaction is

1 0
2 2
3 1
4 3
CHXII04:CHEMICAL KINETICS

320501 For a chemical reaction \(\mathrm{A} \rightarrow \mathrm{B}\), the rate of the reaction is \(2 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\), when the initial concentration is 0.05 \({\rm{mol}}\,\,{\rm{d}}{{\rm{m}}^{{\rm{ - 3}}}}\,{{\rm{s}}^{{\rm{ - 1}}}}\). The rate of the same reaction is \({\rm{1}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{ - 2}}}}\,\,{\rm{mol}}\,{\rm{d}}{{\rm{m}}^{{\rm{ - 3}}}}\,{{\rm{s}}^{{\rm{ - 1}}}}\) when the initial concentration is \({\rm{0}}{\rm{.1}}\,{\rm{mol}}\,{\rm{d}}{{\rm{m}}^{{\rm{ - 3}}}}{\rm{.}}\) The order of the reaction is

1 0
2 3
3 1
4 2
CHXII04:CHEMICAL KINETICS

320498 For the non-stoichiometric reaction,
\({\text{2A + B}} \to {\text{C + D}}\), the following kinetic data were obtained in three separate experiments, all at \(298 \mathrm{~K}\).
\(\begin{array}{lcll}\text { Expt. } & {[\mathrm{A}] \mathrm{M}} & {[\mathrm{B}] \mathrm{M}} & \text { Rate }(\mathrm{M} / \mathrm{s}) \\ 1 & 0.1 & 0.1 & 1.2 \times 10^{-3} \\ 2 & 0.1 & 0.2 & 1.2 \times 10^{-3} \\ 3 & 0.2 & 0.1 & 2.4 \times 10^{-3}\end{array}\)
The rate law for formation of \(\mathrm{C}\) is

1 \(\frac{{{\text{dC}}}}{{{\text{dt}}}}{\text{ = k[A]}}\)
2 \(\frac{{{\text{dC}}}}{{{\text{dt}}}}{\text{ = k[A}}{{\text{]}}^{\text{2}}}{\text{[B]}}\)
3 \(\frac{{{\text{dC}}}}{{{\text{dt}}}}{\text{ = k[A][B]}}\)
4 \(\frac{{{\text{dC}}}}{{{\text{dt}}}}{\text{ = k[A][B}}{{\text{]}}^{\text{2}}}\)
CHXII04:CHEMICAL KINETICS

320499 The half life of a given reaction is doubled if the initial concentration of the reactant is doubled. The order of the reaction is

1 0
2 1
3 2
4 3
CHXII04:CHEMICAL KINETICS

320500 The reaction \(\mathrm{A} \rightarrow \mathrm{B}\) is started with \(10 \mathrm{~g}\) of \(\mathrm{A}\). After 30 and 90 minutes, \(5 \mathrm{~g}\) and \(1.25 \mathrm{~g}\) of \(\mathrm{A}\) is left, respectively. The order of reaction is

1 0
2 2
3 1
4 3
CHXII04:CHEMICAL KINETICS

320501 For a chemical reaction \(\mathrm{A} \rightarrow \mathrm{B}\), the rate of the reaction is \(2 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\), when the initial concentration is 0.05 \({\rm{mol}}\,\,{\rm{d}}{{\rm{m}}^{{\rm{ - 3}}}}\,{{\rm{s}}^{{\rm{ - 1}}}}\). The rate of the same reaction is \({\rm{1}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{ - 2}}}}\,\,{\rm{mol}}\,{\rm{d}}{{\rm{m}}^{{\rm{ - 3}}}}\,{{\rm{s}}^{{\rm{ - 1}}}}\) when the initial concentration is \({\rm{0}}{\rm{.1}}\,{\rm{mol}}\,{\rm{d}}{{\rm{m}}^{{\rm{ - 3}}}}{\rm{.}}\) The order of the reaction is

1 0
2 3
3 1
4 2
CHXII04:CHEMICAL KINETICS

320498 For the non-stoichiometric reaction,
\({\text{2A + B}} \to {\text{C + D}}\), the following kinetic data were obtained in three separate experiments, all at \(298 \mathrm{~K}\).
\(\begin{array}{lcll}\text { Expt. } & {[\mathrm{A}] \mathrm{M}} & {[\mathrm{B}] \mathrm{M}} & \text { Rate }(\mathrm{M} / \mathrm{s}) \\ 1 & 0.1 & 0.1 & 1.2 \times 10^{-3} \\ 2 & 0.1 & 0.2 & 1.2 \times 10^{-3} \\ 3 & 0.2 & 0.1 & 2.4 \times 10^{-3}\end{array}\)
The rate law for formation of \(\mathrm{C}\) is

1 \(\frac{{{\text{dC}}}}{{{\text{dt}}}}{\text{ = k[A]}}\)
2 \(\frac{{{\text{dC}}}}{{{\text{dt}}}}{\text{ = k[A}}{{\text{]}}^{\text{2}}}{\text{[B]}}\)
3 \(\frac{{{\text{dC}}}}{{{\text{dt}}}}{\text{ = k[A][B]}}\)
4 \(\frac{{{\text{dC}}}}{{{\text{dt}}}}{\text{ = k[A][B}}{{\text{]}}^{\text{2}}}\)
CHXII04:CHEMICAL KINETICS

320499 The half life of a given reaction is doubled if the initial concentration of the reactant is doubled. The order of the reaction is

1 0
2 1
3 2
4 3
CHXII04:CHEMICAL KINETICS

320500 The reaction \(\mathrm{A} \rightarrow \mathrm{B}\) is started with \(10 \mathrm{~g}\) of \(\mathrm{A}\). After 30 and 90 minutes, \(5 \mathrm{~g}\) and \(1.25 \mathrm{~g}\) of \(\mathrm{A}\) is left, respectively. The order of reaction is

1 0
2 2
3 1
4 3
CHXII04:CHEMICAL KINETICS

320501 For a chemical reaction \(\mathrm{A} \rightarrow \mathrm{B}\), the rate of the reaction is \(2 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\), when the initial concentration is 0.05 \({\rm{mol}}\,\,{\rm{d}}{{\rm{m}}^{{\rm{ - 3}}}}\,{{\rm{s}}^{{\rm{ - 1}}}}\). The rate of the same reaction is \({\rm{1}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{ - 2}}}}\,\,{\rm{mol}}\,{\rm{d}}{{\rm{m}}^{{\rm{ - 3}}}}\,{{\rm{s}}^{{\rm{ - 1}}}}\) when the initial concentration is \({\rm{0}}{\rm{.1}}\,{\rm{mol}}\,{\rm{d}}{{\rm{m}}^{{\rm{ - 3}}}}{\rm{.}}\) The order of the reaction is

1 0
2 3
3 1
4 2