Methods to Determine Order of Reaction
CHXII04:CHEMICAL KINETICS

320493 Diazonium salt decomposes as \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2}^{+} \mathrm{Cl}^{-} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{N}_{2}\)

At \(0^{\circ} \mathrm{C}\), the evolution of \({{\rm{N}}_{\rm{2}}}\) becomes two times faster when the initial concentration of the salt is doubled. Therefore, it is

1 a first order reaction
2 a second order reaction
3 independent of the initial concentration of the salt
4 a zero order reaction \(30 \%\)
CHXII04:CHEMICAL KINETICS

320494 For the reaction \(A+B \rightarrow\) products, doubling the concentration of \(A\) the rate of the reaction is doubled, but on doubling the concentration of \(\mathrm{B}\) rate remains unaltered. The overall order of the reaction is

1 1
2 0
3 2
4 3
CHXII04:CHEMICAL KINETICS

320495 For reaction, \(\mathrm{aA} \rightarrow \mathrm{xp}\), when \([\mathrm{A}]=2.2 \mathrm{mM}\) the rate was found to be \(2.4 \mathrm{mMs}^{-1}\). On reducing concentration of \(\mathrm{A}\) to half, the rate changes to \(0.6 \mathrm{mMs}^{-1}\). The order of reaction with respect to \(\mathrm{A}\) is

1 1.5
2 2.0
3 2.5
4 3.0
CHXII04:CHEMICAL KINETICS

320496 The given graph is a representation of kinetics of a reaction.
The y and x axes for zero and first order reactions, respectivley are
supporting img

1 zero order (y=) concentration and (x= time), first order (y= rate constant and x= concentration)
2 \(z\) zero \(\operatorname{order}(y=\) rate and \(x=\) concentration \()\), first \(\operatorname{order}\left(y=t_{1 / 2}\right.\) and \(x=\) concentration \()\)
3 zero \(\operatorname{order}(y=\) rate and \(x=\) concentration), first order \(\left(y=\right.\) rate and \(\left.x=t_{1 / 2}\right)\)
4 zero order \((y=\) concentration and \(x=\) time \()\), first \(\operatorname{order}\left(\mathrm{y}=\mathrm{t}_{1 / 2}\right.\) and \(\mathrm{x}=\) concentration \()\)
CHXII04:CHEMICAL KINETICS

320497 The bromination of acetone that occurs in acid solution is represented by this equation.
\(\begin{aligned}& \mathrm{CH}_{3} \mathrm{COCH}_{3}(a q)+\mathrm{Br}_{2}(a q) \rightarrow \\& \mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{Br}(a q)+\mathrm{H}^{+}(a q)+\mathrm{Br}^{-}(a q)\end{aligned}\)
These kinetic data were obtained for given eaction concentrations.
Initial concentrations, \(\mathrm{M}\)
\[\begin{array}{*{20}{c}}{\left[ {{\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{COC}}{{\rm{H}}_{\rm{3}}}} \right]}&{{\rm{B}}{{\rm{r}}_{\rm{2}}}}&{{{\rm{H}}^{{\rm{ + }}}}}&{{\rm{Initial}}{\mkern 1mu} {\mkern 1mu} {\rm{rate, }}}\\
{\rm{ }}&{}&{}&{{\rm{disappearance}}{\mkern 1mu} {\mkern 1mu} {\rm{of}}{\mkern 1mu} {\mkern 1mu} {\rm{B}}{{\rm{r}}_{\rm{2}}}}\\{{\rm{0}}{\rm{.30}}}&{{\rm{0}}{\rm{.05}}}&{{\rm{0}}{\rm{.05}}}&{{\rm{5}}{\rm{.7 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}}\\{{\rm{0}}{\rm{.30}}}&{{\rm{0}}{\rm{.10}}}&{{\rm{0}}{\rm{.05}}}&{{\rm{5}}{\rm{.7 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}}\\{{\rm{0}}{\rm{.30}}}&{{\rm{0}}{\rm{.10}}}&{{\rm{0}}{\rm{.10}}}&{{\rm{1}}{\rm{.2 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}}\\{{\rm{0}}{\rm{.40}}}&{{\rm{0}}{\rm{.05}}}&{{\rm{0}}{\rm{.20}}}&{{\rm{3}}{\rm{.1 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}}\\{}&{}&{}&{}\end{array}\]
Based on these data, the rate equation is

1 \({\rm{rate = k}}\left[ {{\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{COC}}{{\rm{H}}_{\rm{3}}}} \right]\left[ {{\rm{B}}{{\rm{r}}_{\rm{2}}}} \right]\left[ {{{\rm{H}}^{\rm{ + }}}} \right]\)
2 \({\rm{rate = k[CHCOCH]}}\left[ {{{\rm{H}}^{\rm{ + }}}} \right]\)
3 \({\rm{rate = k}}\left[ {{\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{COC}}{{\rm{H}}_{\rm{3}}}} \right]\left[ {{\rm{B}}{{\rm{r}}_{\rm{2}}}} \right]{\left[ {{{\rm{H}}^{\rm{ + }}}} \right]^{\rm{2}}}\)
4 \({\rm{rate = k}}\left[ {{\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{COC}}{{\rm{H}}_{\rm{3}}}} \right]\left[ {{\rm{B}}{{\rm{r}}_{\rm{2}}}} \right]\)
CHXII04:CHEMICAL KINETICS

320493 Diazonium salt decomposes as \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2}^{+} \mathrm{Cl}^{-} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{N}_{2}\)

At \(0^{\circ} \mathrm{C}\), the evolution of \({{\rm{N}}_{\rm{2}}}\) becomes two times faster when the initial concentration of the salt is doubled. Therefore, it is

1 a first order reaction
2 a second order reaction
3 independent of the initial concentration of the salt
4 a zero order reaction \(30 \%\)
CHXII04:CHEMICAL KINETICS

320494 For the reaction \(A+B \rightarrow\) products, doubling the concentration of \(A\) the rate of the reaction is doubled, but on doubling the concentration of \(\mathrm{B}\) rate remains unaltered. The overall order of the reaction is

1 1
2 0
3 2
4 3
CHXII04:CHEMICAL KINETICS

320495 For reaction, \(\mathrm{aA} \rightarrow \mathrm{xp}\), when \([\mathrm{A}]=2.2 \mathrm{mM}\) the rate was found to be \(2.4 \mathrm{mMs}^{-1}\). On reducing concentration of \(\mathrm{A}\) to half, the rate changes to \(0.6 \mathrm{mMs}^{-1}\). The order of reaction with respect to \(\mathrm{A}\) is

1 1.5
2 2.0
3 2.5
4 3.0
CHXII04:CHEMICAL KINETICS

320496 The given graph is a representation of kinetics of a reaction.
The y and x axes for zero and first order reactions, respectivley are
supporting img

1 zero order (y=) concentration and (x= time), first order (y= rate constant and x= concentration)
2 \(z\) zero \(\operatorname{order}(y=\) rate and \(x=\) concentration \()\), first \(\operatorname{order}\left(y=t_{1 / 2}\right.\) and \(x=\) concentration \()\)
3 zero \(\operatorname{order}(y=\) rate and \(x=\) concentration), first order \(\left(y=\right.\) rate and \(\left.x=t_{1 / 2}\right)\)
4 zero order \((y=\) concentration and \(x=\) time \()\), first \(\operatorname{order}\left(\mathrm{y}=\mathrm{t}_{1 / 2}\right.\) and \(\mathrm{x}=\) concentration \()\)
CHXII04:CHEMICAL KINETICS

320497 The bromination of acetone that occurs in acid solution is represented by this equation.
\(\begin{aligned}& \mathrm{CH}_{3} \mathrm{COCH}_{3}(a q)+\mathrm{Br}_{2}(a q) \rightarrow \\& \mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{Br}(a q)+\mathrm{H}^{+}(a q)+\mathrm{Br}^{-}(a q)\end{aligned}\)
These kinetic data were obtained for given eaction concentrations.
Initial concentrations, \(\mathrm{M}\)
\[\begin{array}{*{20}{c}}{\left[ {{\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{COC}}{{\rm{H}}_{\rm{3}}}} \right]}&{{\rm{B}}{{\rm{r}}_{\rm{2}}}}&{{{\rm{H}}^{{\rm{ + }}}}}&{{\rm{Initial}}{\mkern 1mu} {\mkern 1mu} {\rm{rate, }}}\\
{\rm{ }}&{}&{}&{{\rm{disappearance}}{\mkern 1mu} {\mkern 1mu} {\rm{of}}{\mkern 1mu} {\mkern 1mu} {\rm{B}}{{\rm{r}}_{\rm{2}}}}\\{{\rm{0}}{\rm{.30}}}&{{\rm{0}}{\rm{.05}}}&{{\rm{0}}{\rm{.05}}}&{{\rm{5}}{\rm{.7 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}}\\{{\rm{0}}{\rm{.30}}}&{{\rm{0}}{\rm{.10}}}&{{\rm{0}}{\rm{.05}}}&{{\rm{5}}{\rm{.7 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}}\\{{\rm{0}}{\rm{.30}}}&{{\rm{0}}{\rm{.10}}}&{{\rm{0}}{\rm{.10}}}&{{\rm{1}}{\rm{.2 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}}\\{{\rm{0}}{\rm{.40}}}&{{\rm{0}}{\rm{.05}}}&{{\rm{0}}{\rm{.20}}}&{{\rm{3}}{\rm{.1 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}}\\{}&{}&{}&{}\end{array}\]
Based on these data, the rate equation is

1 \({\rm{rate = k}}\left[ {{\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{COC}}{{\rm{H}}_{\rm{3}}}} \right]\left[ {{\rm{B}}{{\rm{r}}_{\rm{2}}}} \right]\left[ {{{\rm{H}}^{\rm{ + }}}} \right]\)
2 \({\rm{rate = k[CHCOCH]}}\left[ {{{\rm{H}}^{\rm{ + }}}} \right]\)
3 \({\rm{rate = k}}\left[ {{\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{COC}}{{\rm{H}}_{\rm{3}}}} \right]\left[ {{\rm{B}}{{\rm{r}}_{\rm{2}}}} \right]{\left[ {{{\rm{H}}^{\rm{ + }}}} \right]^{\rm{2}}}\)
4 \({\rm{rate = k}}\left[ {{\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{COC}}{{\rm{H}}_{\rm{3}}}} \right]\left[ {{\rm{B}}{{\rm{r}}_{\rm{2}}}} \right]\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
CHXII04:CHEMICAL KINETICS

320493 Diazonium salt decomposes as \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2}^{+} \mathrm{Cl}^{-} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{N}_{2}\)

At \(0^{\circ} \mathrm{C}\), the evolution of \({{\rm{N}}_{\rm{2}}}\) becomes two times faster when the initial concentration of the salt is doubled. Therefore, it is

1 a first order reaction
2 a second order reaction
3 independent of the initial concentration of the salt
4 a zero order reaction \(30 \%\)
CHXII04:CHEMICAL KINETICS

320494 For the reaction \(A+B \rightarrow\) products, doubling the concentration of \(A\) the rate of the reaction is doubled, but on doubling the concentration of \(\mathrm{B}\) rate remains unaltered. The overall order of the reaction is

1 1
2 0
3 2
4 3
CHXII04:CHEMICAL KINETICS

320495 For reaction, \(\mathrm{aA} \rightarrow \mathrm{xp}\), when \([\mathrm{A}]=2.2 \mathrm{mM}\) the rate was found to be \(2.4 \mathrm{mMs}^{-1}\). On reducing concentration of \(\mathrm{A}\) to half, the rate changes to \(0.6 \mathrm{mMs}^{-1}\). The order of reaction with respect to \(\mathrm{A}\) is

1 1.5
2 2.0
3 2.5
4 3.0
CHXII04:CHEMICAL KINETICS

320496 The given graph is a representation of kinetics of a reaction.
The y and x axes for zero and first order reactions, respectivley are
supporting img

1 zero order (y=) concentration and (x= time), first order (y= rate constant and x= concentration)
2 \(z\) zero \(\operatorname{order}(y=\) rate and \(x=\) concentration \()\), first \(\operatorname{order}\left(y=t_{1 / 2}\right.\) and \(x=\) concentration \()\)
3 zero \(\operatorname{order}(y=\) rate and \(x=\) concentration), first order \(\left(y=\right.\) rate and \(\left.x=t_{1 / 2}\right)\)
4 zero order \((y=\) concentration and \(x=\) time \()\), first \(\operatorname{order}\left(\mathrm{y}=\mathrm{t}_{1 / 2}\right.\) and \(\mathrm{x}=\) concentration \()\)
CHXII04:CHEMICAL KINETICS

320497 The bromination of acetone that occurs in acid solution is represented by this equation.
\(\begin{aligned}& \mathrm{CH}_{3} \mathrm{COCH}_{3}(a q)+\mathrm{Br}_{2}(a q) \rightarrow \\& \mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{Br}(a q)+\mathrm{H}^{+}(a q)+\mathrm{Br}^{-}(a q)\end{aligned}\)
These kinetic data were obtained for given eaction concentrations.
Initial concentrations, \(\mathrm{M}\)
\[\begin{array}{*{20}{c}}{\left[ {{\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{COC}}{{\rm{H}}_{\rm{3}}}} \right]}&{{\rm{B}}{{\rm{r}}_{\rm{2}}}}&{{{\rm{H}}^{{\rm{ + }}}}}&{{\rm{Initial}}{\mkern 1mu} {\mkern 1mu} {\rm{rate, }}}\\
{\rm{ }}&{}&{}&{{\rm{disappearance}}{\mkern 1mu} {\mkern 1mu} {\rm{of}}{\mkern 1mu} {\mkern 1mu} {\rm{B}}{{\rm{r}}_{\rm{2}}}}\\{{\rm{0}}{\rm{.30}}}&{{\rm{0}}{\rm{.05}}}&{{\rm{0}}{\rm{.05}}}&{{\rm{5}}{\rm{.7 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}}\\{{\rm{0}}{\rm{.30}}}&{{\rm{0}}{\rm{.10}}}&{{\rm{0}}{\rm{.05}}}&{{\rm{5}}{\rm{.7 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}}\\{{\rm{0}}{\rm{.30}}}&{{\rm{0}}{\rm{.10}}}&{{\rm{0}}{\rm{.10}}}&{{\rm{1}}{\rm{.2 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}}\\{{\rm{0}}{\rm{.40}}}&{{\rm{0}}{\rm{.05}}}&{{\rm{0}}{\rm{.20}}}&{{\rm{3}}{\rm{.1 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}}\\{}&{}&{}&{}\end{array}\]
Based on these data, the rate equation is

1 \({\rm{rate = k}}\left[ {{\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{COC}}{{\rm{H}}_{\rm{3}}}} \right]\left[ {{\rm{B}}{{\rm{r}}_{\rm{2}}}} \right]\left[ {{{\rm{H}}^{\rm{ + }}}} \right]\)
2 \({\rm{rate = k[CHCOCH]}}\left[ {{{\rm{H}}^{\rm{ + }}}} \right]\)
3 \({\rm{rate = k}}\left[ {{\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{COC}}{{\rm{H}}_{\rm{3}}}} \right]\left[ {{\rm{B}}{{\rm{r}}_{\rm{2}}}} \right]{\left[ {{{\rm{H}}^{\rm{ + }}}} \right]^{\rm{2}}}\)
4 \({\rm{rate = k}}\left[ {{\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{COC}}{{\rm{H}}_{\rm{3}}}} \right]\left[ {{\rm{B}}{{\rm{r}}_{\rm{2}}}} \right]\)
CHXII04:CHEMICAL KINETICS

320493 Diazonium salt decomposes as \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2}^{+} \mathrm{Cl}^{-} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{N}_{2}\)

At \(0^{\circ} \mathrm{C}\), the evolution of \({{\rm{N}}_{\rm{2}}}\) becomes two times faster when the initial concentration of the salt is doubled. Therefore, it is

1 a first order reaction
2 a second order reaction
3 independent of the initial concentration of the salt
4 a zero order reaction \(30 \%\)
CHXII04:CHEMICAL KINETICS

320494 For the reaction \(A+B \rightarrow\) products, doubling the concentration of \(A\) the rate of the reaction is doubled, but on doubling the concentration of \(\mathrm{B}\) rate remains unaltered. The overall order of the reaction is

1 1
2 0
3 2
4 3
CHXII04:CHEMICAL KINETICS

320495 For reaction, \(\mathrm{aA} \rightarrow \mathrm{xp}\), when \([\mathrm{A}]=2.2 \mathrm{mM}\) the rate was found to be \(2.4 \mathrm{mMs}^{-1}\). On reducing concentration of \(\mathrm{A}\) to half, the rate changes to \(0.6 \mathrm{mMs}^{-1}\). The order of reaction with respect to \(\mathrm{A}\) is

1 1.5
2 2.0
3 2.5
4 3.0
CHXII04:CHEMICAL KINETICS

320496 The given graph is a representation of kinetics of a reaction.
The y and x axes for zero and first order reactions, respectivley are
supporting img

1 zero order (y=) concentration and (x= time), first order (y= rate constant and x= concentration)
2 \(z\) zero \(\operatorname{order}(y=\) rate and \(x=\) concentration \()\), first \(\operatorname{order}\left(y=t_{1 / 2}\right.\) and \(x=\) concentration \()\)
3 zero \(\operatorname{order}(y=\) rate and \(x=\) concentration), first order \(\left(y=\right.\) rate and \(\left.x=t_{1 / 2}\right)\)
4 zero order \((y=\) concentration and \(x=\) time \()\), first \(\operatorname{order}\left(\mathrm{y}=\mathrm{t}_{1 / 2}\right.\) and \(\mathrm{x}=\) concentration \()\)
CHXII04:CHEMICAL KINETICS

320497 The bromination of acetone that occurs in acid solution is represented by this equation.
\(\begin{aligned}& \mathrm{CH}_{3} \mathrm{COCH}_{3}(a q)+\mathrm{Br}_{2}(a q) \rightarrow \\& \mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{Br}(a q)+\mathrm{H}^{+}(a q)+\mathrm{Br}^{-}(a q)\end{aligned}\)
These kinetic data were obtained for given eaction concentrations.
Initial concentrations, \(\mathrm{M}\)
\[\begin{array}{*{20}{c}}{\left[ {{\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{COC}}{{\rm{H}}_{\rm{3}}}} \right]}&{{\rm{B}}{{\rm{r}}_{\rm{2}}}}&{{{\rm{H}}^{{\rm{ + }}}}}&{{\rm{Initial}}{\mkern 1mu} {\mkern 1mu} {\rm{rate, }}}\\
{\rm{ }}&{}&{}&{{\rm{disappearance}}{\mkern 1mu} {\mkern 1mu} {\rm{of}}{\mkern 1mu} {\mkern 1mu} {\rm{B}}{{\rm{r}}_{\rm{2}}}}\\{{\rm{0}}{\rm{.30}}}&{{\rm{0}}{\rm{.05}}}&{{\rm{0}}{\rm{.05}}}&{{\rm{5}}{\rm{.7 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}}\\{{\rm{0}}{\rm{.30}}}&{{\rm{0}}{\rm{.10}}}&{{\rm{0}}{\rm{.05}}}&{{\rm{5}}{\rm{.7 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}}\\{{\rm{0}}{\rm{.30}}}&{{\rm{0}}{\rm{.10}}}&{{\rm{0}}{\rm{.10}}}&{{\rm{1}}{\rm{.2 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}}\\{{\rm{0}}{\rm{.40}}}&{{\rm{0}}{\rm{.05}}}&{{\rm{0}}{\rm{.20}}}&{{\rm{3}}{\rm{.1 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}}\\{}&{}&{}&{}\end{array}\]
Based on these data, the rate equation is

1 \({\rm{rate = k}}\left[ {{\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{COC}}{{\rm{H}}_{\rm{3}}}} \right]\left[ {{\rm{B}}{{\rm{r}}_{\rm{2}}}} \right]\left[ {{{\rm{H}}^{\rm{ + }}}} \right]\)
2 \({\rm{rate = k[CHCOCH]}}\left[ {{{\rm{H}}^{\rm{ + }}}} \right]\)
3 \({\rm{rate = k}}\left[ {{\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{COC}}{{\rm{H}}_{\rm{3}}}} \right]\left[ {{\rm{B}}{{\rm{r}}_{\rm{2}}}} \right]{\left[ {{{\rm{H}}^{\rm{ + }}}} \right]^{\rm{2}}}\)
4 \({\rm{rate = k}}\left[ {{\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{COC}}{{\rm{H}}_{\rm{3}}}} \right]\left[ {{\rm{B}}{{\rm{r}}_{\rm{2}}}} \right]\)
CHXII04:CHEMICAL KINETICS

320493 Diazonium salt decomposes as \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2}^{+} \mathrm{Cl}^{-} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{N}_{2}\)

At \(0^{\circ} \mathrm{C}\), the evolution of \({{\rm{N}}_{\rm{2}}}\) becomes two times faster when the initial concentration of the salt is doubled. Therefore, it is

1 a first order reaction
2 a second order reaction
3 independent of the initial concentration of the salt
4 a zero order reaction \(30 \%\)
CHXII04:CHEMICAL KINETICS

320494 For the reaction \(A+B \rightarrow\) products, doubling the concentration of \(A\) the rate of the reaction is doubled, but on doubling the concentration of \(\mathrm{B}\) rate remains unaltered. The overall order of the reaction is

1 1
2 0
3 2
4 3
CHXII04:CHEMICAL KINETICS

320495 For reaction, \(\mathrm{aA} \rightarrow \mathrm{xp}\), when \([\mathrm{A}]=2.2 \mathrm{mM}\) the rate was found to be \(2.4 \mathrm{mMs}^{-1}\). On reducing concentration of \(\mathrm{A}\) to half, the rate changes to \(0.6 \mathrm{mMs}^{-1}\). The order of reaction with respect to \(\mathrm{A}\) is

1 1.5
2 2.0
3 2.5
4 3.0
CHXII04:CHEMICAL KINETICS

320496 The given graph is a representation of kinetics of a reaction.
The y and x axes for zero and first order reactions, respectivley are
supporting img

1 zero order (y=) concentration and (x= time), first order (y= rate constant and x= concentration)
2 \(z\) zero \(\operatorname{order}(y=\) rate and \(x=\) concentration \()\), first \(\operatorname{order}\left(y=t_{1 / 2}\right.\) and \(x=\) concentration \()\)
3 zero \(\operatorname{order}(y=\) rate and \(x=\) concentration), first order \(\left(y=\right.\) rate and \(\left.x=t_{1 / 2}\right)\)
4 zero order \((y=\) concentration and \(x=\) time \()\), first \(\operatorname{order}\left(\mathrm{y}=\mathrm{t}_{1 / 2}\right.\) and \(\mathrm{x}=\) concentration \()\)
CHXII04:CHEMICAL KINETICS

320497 The bromination of acetone that occurs in acid solution is represented by this equation.
\(\begin{aligned}& \mathrm{CH}_{3} \mathrm{COCH}_{3}(a q)+\mathrm{Br}_{2}(a q) \rightarrow \\& \mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{Br}(a q)+\mathrm{H}^{+}(a q)+\mathrm{Br}^{-}(a q)\end{aligned}\)
These kinetic data were obtained for given eaction concentrations.
Initial concentrations, \(\mathrm{M}\)
\[\begin{array}{*{20}{c}}{\left[ {{\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{COC}}{{\rm{H}}_{\rm{3}}}} \right]}&{{\rm{B}}{{\rm{r}}_{\rm{2}}}}&{{{\rm{H}}^{{\rm{ + }}}}}&{{\rm{Initial}}{\mkern 1mu} {\mkern 1mu} {\rm{rate, }}}\\
{\rm{ }}&{}&{}&{{\rm{disappearance}}{\mkern 1mu} {\mkern 1mu} {\rm{of}}{\mkern 1mu} {\mkern 1mu} {\rm{B}}{{\rm{r}}_{\rm{2}}}}\\{{\rm{0}}{\rm{.30}}}&{{\rm{0}}{\rm{.05}}}&{{\rm{0}}{\rm{.05}}}&{{\rm{5}}{\rm{.7 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}}\\{{\rm{0}}{\rm{.30}}}&{{\rm{0}}{\rm{.10}}}&{{\rm{0}}{\rm{.05}}}&{{\rm{5}}{\rm{.7 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}}\\{{\rm{0}}{\rm{.30}}}&{{\rm{0}}{\rm{.10}}}&{{\rm{0}}{\rm{.10}}}&{{\rm{1}}{\rm{.2 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}}\\{{\rm{0}}{\rm{.40}}}&{{\rm{0}}{\rm{.05}}}&{{\rm{0}}{\rm{.20}}}&{{\rm{3}}{\rm{.1 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}}\\{}&{}&{}&{}\end{array}\]
Based on these data, the rate equation is

1 \({\rm{rate = k}}\left[ {{\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{COC}}{{\rm{H}}_{\rm{3}}}} \right]\left[ {{\rm{B}}{{\rm{r}}_{\rm{2}}}} \right]\left[ {{{\rm{H}}^{\rm{ + }}}} \right]\)
2 \({\rm{rate = k[CHCOCH]}}\left[ {{{\rm{H}}^{\rm{ + }}}} \right]\)
3 \({\rm{rate = k}}\left[ {{\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{COC}}{{\rm{H}}_{\rm{3}}}} \right]\left[ {{\rm{B}}{{\rm{r}}_{\rm{2}}}} \right]{\left[ {{{\rm{H}}^{\rm{ + }}}} \right]^{\rm{2}}}\)
4 \({\rm{rate = k}}\left[ {{\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{COC}}{{\rm{H}}_{\rm{3}}}} \right]\left[ {{\rm{B}}{{\rm{r}}_{\rm{2}}}} \right]\)