Integrated Rate Equations
CHXII04:CHEMICAL KINETICS

320347 For a hypothetical first order reaction,\({\mathrm{\mathrm{A}+\mathrm{B}+\mathrm{C} \longrightarrow}}\) Products,
the rate law is expressed as,
Rate \({\rm{ = k}}{[{\rm{A}}]^{\rm{x}}}{[{\rm{B}}]^{\rm{y}}}{[{\rm{C}}]^{\rm{z}}}.\) The value of \({\mathrm{(x+y+z)}}\) is ____ .

1 1
2 0
3 2
4 3
CHXII04:CHEMICAL KINETICS

320348 If the rate constant for the disintegration of a radiactive nucleus is \(\lambda\). Therefore, the probability \(\mathrm{P}\) of survival of a radiactive nucleus for one mean life is

1 e
2 \({{\rm{e}}^{\rm{2}}}\)
3 \({{\rm{e}}^{{\rm{ - 1}}}}\)
4 \({{\rm{e}}^{{\rm{ - 2}}}}\)
CHXII04:CHEMICAL KINETICS

320349 Which of the following represents the expression for \(\dfrac{4^{\text {th }}}{6}\) life of a first order reaction?

1 \(\frac{{\rm{k}}}{{{\rm{2}}{\rm{.303}}}}{\rm{log}}\frac{{\rm{5}}}{{\rm{3}}}\)
2 \(\frac{{{\rm{2}}{\rm{.303}}}}{{\rm{k}}}{\rm{log}}\frac{{\rm{2}}}{{\rm{5}}}\)
3 \(\frac{{{\rm{2}}{\rm{.303}}}}{{\rm{k}}}{\rm{log3}}\)
4 \(\frac{{{\rm{2}}{\rm{.303}}}}{{\rm{k}}}{\rm{log2}}\)
CHXII04:CHEMICAL KINETICS

320350 The reaction \({\text{2NO(g) + }}{{\text{O}}_{\text{2}}}{\text{(g)}} \rightleftharpoons {\text{2N}}{{\text{O}}_{\text{2}}}{\text{(g)}}\) is of first order. If volume of reaction vessel is reduced to \({\raise0.5ex\hbox{\(\scriptstyle {\rm{1}}\)}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{\(\scriptstyle {\rm{3}}\)}}\), the rate of reaction would be

1 \(1 / 3\) times
2 \(2 / 3\) times
3 3 times
4 6 times
CHXII04:CHEMICAL KINETICS

320351 Slope of the graph between rate \((\mathrm{Y}-\) axis \()\) and \([\mathrm{A}](\mathrm{X}\)-axis \()\) for the first order reaction is equal to

1 \(\mathrm{k}\)
2 \(\dfrac{2.303}{\mathrm{k}}\)
3 \(\dfrac{\mathrm{k}}{2.303}\)
4 \(-\mathrm{k}\)
CHXII04:CHEMICAL KINETICS

320347 For a hypothetical first order reaction,\({\mathrm{\mathrm{A}+\mathrm{B}+\mathrm{C} \longrightarrow}}\) Products,
the rate law is expressed as,
Rate \({\rm{ = k}}{[{\rm{A}}]^{\rm{x}}}{[{\rm{B}}]^{\rm{y}}}{[{\rm{C}}]^{\rm{z}}}.\) The value of \({\mathrm{(x+y+z)}}\) is ____ .

1 1
2 0
3 2
4 3
CHXII04:CHEMICAL KINETICS

320348 If the rate constant for the disintegration of a radiactive nucleus is \(\lambda\). Therefore, the probability \(\mathrm{P}\) of survival of a radiactive nucleus for one mean life is

1 e
2 \({{\rm{e}}^{\rm{2}}}\)
3 \({{\rm{e}}^{{\rm{ - 1}}}}\)
4 \({{\rm{e}}^{{\rm{ - 2}}}}\)
CHXII04:CHEMICAL KINETICS

320349 Which of the following represents the expression for \(\dfrac{4^{\text {th }}}{6}\) life of a first order reaction?

1 \(\frac{{\rm{k}}}{{{\rm{2}}{\rm{.303}}}}{\rm{log}}\frac{{\rm{5}}}{{\rm{3}}}\)
2 \(\frac{{{\rm{2}}{\rm{.303}}}}{{\rm{k}}}{\rm{log}}\frac{{\rm{2}}}{{\rm{5}}}\)
3 \(\frac{{{\rm{2}}{\rm{.303}}}}{{\rm{k}}}{\rm{log3}}\)
4 \(\frac{{{\rm{2}}{\rm{.303}}}}{{\rm{k}}}{\rm{log2}}\)
CHXII04:CHEMICAL KINETICS

320350 The reaction \({\text{2NO(g) + }}{{\text{O}}_{\text{2}}}{\text{(g)}} \rightleftharpoons {\text{2N}}{{\text{O}}_{\text{2}}}{\text{(g)}}\) is of first order. If volume of reaction vessel is reduced to \({\raise0.5ex\hbox{\(\scriptstyle {\rm{1}}\)}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{\(\scriptstyle {\rm{3}}\)}}\), the rate of reaction would be

1 \(1 / 3\) times
2 \(2 / 3\) times
3 3 times
4 6 times
CHXII04:CHEMICAL KINETICS

320351 Slope of the graph between rate \((\mathrm{Y}-\) axis \()\) and \([\mathrm{A}](\mathrm{X}\)-axis \()\) for the first order reaction is equal to

1 \(\mathrm{k}\)
2 \(\dfrac{2.303}{\mathrm{k}}\)
3 \(\dfrac{\mathrm{k}}{2.303}\)
4 \(-\mathrm{k}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
CHXII04:CHEMICAL KINETICS

320347 For a hypothetical first order reaction,\({\mathrm{\mathrm{A}+\mathrm{B}+\mathrm{C} \longrightarrow}}\) Products,
the rate law is expressed as,
Rate \({\rm{ = k}}{[{\rm{A}}]^{\rm{x}}}{[{\rm{B}}]^{\rm{y}}}{[{\rm{C}}]^{\rm{z}}}.\) The value of \({\mathrm{(x+y+z)}}\) is ____ .

1 1
2 0
3 2
4 3
CHXII04:CHEMICAL KINETICS

320348 If the rate constant for the disintegration of a radiactive nucleus is \(\lambda\). Therefore, the probability \(\mathrm{P}\) of survival of a radiactive nucleus for one mean life is

1 e
2 \({{\rm{e}}^{\rm{2}}}\)
3 \({{\rm{e}}^{{\rm{ - 1}}}}\)
4 \({{\rm{e}}^{{\rm{ - 2}}}}\)
CHXII04:CHEMICAL KINETICS

320349 Which of the following represents the expression for \(\dfrac{4^{\text {th }}}{6}\) life of a first order reaction?

1 \(\frac{{\rm{k}}}{{{\rm{2}}{\rm{.303}}}}{\rm{log}}\frac{{\rm{5}}}{{\rm{3}}}\)
2 \(\frac{{{\rm{2}}{\rm{.303}}}}{{\rm{k}}}{\rm{log}}\frac{{\rm{2}}}{{\rm{5}}}\)
3 \(\frac{{{\rm{2}}{\rm{.303}}}}{{\rm{k}}}{\rm{log3}}\)
4 \(\frac{{{\rm{2}}{\rm{.303}}}}{{\rm{k}}}{\rm{log2}}\)
CHXII04:CHEMICAL KINETICS

320350 The reaction \({\text{2NO(g) + }}{{\text{O}}_{\text{2}}}{\text{(g)}} \rightleftharpoons {\text{2N}}{{\text{O}}_{\text{2}}}{\text{(g)}}\) is of first order. If volume of reaction vessel is reduced to \({\raise0.5ex\hbox{\(\scriptstyle {\rm{1}}\)}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{\(\scriptstyle {\rm{3}}\)}}\), the rate of reaction would be

1 \(1 / 3\) times
2 \(2 / 3\) times
3 3 times
4 6 times
CHXII04:CHEMICAL KINETICS

320351 Slope of the graph between rate \((\mathrm{Y}-\) axis \()\) and \([\mathrm{A}](\mathrm{X}\)-axis \()\) for the first order reaction is equal to

1 \(\mathrm{k}\)
2 \(\dfrac{2.303}{\mathrm{k}}\)
3 \(\dfrac{\mathrm{k}}{2.303}\)
4 \(-\mathrm{k}\)
CHXII04:CHEMICAL KINETICS

320347 For a hypothetical first order reaction,\({\mathrm{\mathrm{A}+\mathrm{B}+\mathrm{C} \longrightarrow}}\) Products,
the rate law is expressed as,
Rate \({\rm{ = k}}{[{\rm{A}}]^{\rm{x}}}{[{\rm{B}}]^{\rm{y}}}{[{\rm{C}}]^{\rm{z}}}.\) The value of \({\mathrm{(x+y+z)}}\) is ____ .

1 1
2 0
3 2
4 3
CHXII04:CHEMICAL KINETICS

320348 If the rate constant for the disintegration of a radiactive nucleus is \(\lambda\). Therefore, the probability \(\mathrm{P}\) of survival of a radiactive nucleus for one mean life is

1 e
2 \({{\rm{e}}^{\rm{2}}}\)
3 \({{\rm{e}}^{{\rm{ - 1}}}}\)
4 \({{\rm{e}}^{{\rm{ - 2}}}}\)
CHXII04:CHEMICAL KINETICS

320349 Which of the following represents the expression for \(\dfrac{4^{\text {th }}}{6}\) life of a first order reaction?

1 \(\frac{{\rm{k}}}{{{\rm{2}}{\rm{.303}}}}{\rm{log}}\frac{{\rm{5}}}{{\rm{3}}}\)
2 \(\frac{{{\rm{2}}{\rm{.303}}}}{{\rm{k}}}{\rm{log}}\frac{{\rm{2}}}{{\rm{5}}}\)
3 \(\frac{{{\rm{2}}{\rm{.303}}}}{{\rm{k}}}{\rm{log3}}\)
4 \(\frac{{{\rm{2}}{\rm{.303}}}}{{\rm{k}}}{\rm{log2}}\)
CHXII04:CHEMICAL KINETICS

320350 The reaction \({\text{2NO(g) + }}{{\text{O}}_{\text{2}}}{\text{(g)}} \rightleftharpoons {\text{2N}}{{\text{O}}_{\text{2}}}{\text{(g)}}\) is of first order. If volume of reaction vessel is reduced to \({\raise0.5ex\hbox{\(\scriptstyle {\rm{1}}\)}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{\(\scriptstyle {\rm{3}}\)}}\), the rate of reaction would be

1 \(1 / 3\) times
2 \(2 / 3\) times
3 3 times
4 6 times
CHXII04:CHEMICAL KINETICS

320351 Slope of the graph between rate \((\mathrm{Y}-\) axis \()\) and \([\mathrm{A}](\mathrm{X}\)-axis \()\) for the first order reaction is equal to

1 \(\mathrm{k}\)
2 \(\dfrac{2.303}{\mathrm{k}}\)
3 \(\dfrac{\mathrm{k}}{2.303}\)
4 \(-\mathrm{k}\)
CHXII04:CHEMICAL KINETICS

320347 For a hypothetical first order reaction,\({\mathrm{\mathrm{A}+\mathrm{B}+\mathrm{C} \longrightarrow}}\) Products,
the rate law is expressed as,
Rate \({\rm{ = k}}{[{\rm{A}}]^{\rm{x}}}{[{\rm{B}}]^{\rm{y}}}{[{\rm{C}}]^{\rm{z}}}.\) The value of \({\mathrm{(x+y+z)}}\) is ____ .

1 1
2 0
3 2
4 3
CHXII04:CHEMICAL KINETICS

320348 If the rate constant for the disintegration of a radiactive nucleus is \(\lambda\). Therefore, the probability \(\mathrm{P}\) of survival of a radiactive nucleus for one mean life is

1 e
2 \({{\rm{e}}^{\rm{2}}}\)
3 \({{\rm{e}}^{{\rm{ - 1}}}}\)
4 \({{\rm{e}}^{{\rm{ - 2}}}}\)
CHXII04:CHEMICAL KINETICS

320349 Which of the following represents the expression for \(\dfrac{4^{\text {th }}}{6}\) life of a first order reaction?

1 \(\frac{{\rm{k}}}{{{\rm{2}}{\rm{.303}}}}{\rm{log}}\frac{{\rm{5}}}{{\rm{3}}}\)
2 \(\frac{{{\rm{2}}{\rm{.303}}}}{{\rm{k}}}{\rm{log}}\frac{{\rm{2}}}{{\rm{5}}}\)
3 \(\frac{{{\rm{2}}{\rm{.303}}}}{{\rm{k}}}{\rm{log3}}\)
4 \(\frac{{{\rm{2}}{\rm{.303}}}}{{\rm{k}}}{\rm{log2}}\)
CHXII04:CHEMICAL KINETICS

320350 The reaction \({\text{2NO(g) + }}{{\text{O}}_{\text{2}}}{\text{(g)}} \rightleftharpoons {\text{2N}}{{\text{O}}_{\text{2}}}{\text{(g)}}\) is of first order. If volume of reaction vessel is reduced to \({\raise0.5ex\hbox{\(\scriptstyle {\rm{1}}\)}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{\(\scriptstyle {\rm{3}}\)}}\), the rate of reaction would be

1 \(1 / 3\) times
2 \(2 / 3\) times
3 3 times
4 6 times
CHXII04:CHEMICAL KINETICS

320351 Slope of the graph between rate \((\mathrm{Y}-\) axis \()\) and \([\mathrm{A}](\mathrm{X}\)-axis \()\) for the first order reaction is equal to

1 \(\mathrm{k}\)
2 \(\dfrac{2.303}{\mathrm{k}}\)
3 \(\dfrac{\mathrm{k}}{2.303}\)
4 \(-\mathrm{k}\)