320330
The concentration of a reactant X decreases from \(0.1 \mathrm{M}\) to \(0.005 \mathrm{M}\) in 40 minutes. If the reaction follows \(1^{\text {st }}\) order kinetics, the rate of the reaction when the concentration of \(\mathrm{X}\) is 0.01 \(\mathrm{M}\) will be
For first order reaction, \({\rm{k = }}\frac{{{\rm{2}}{\rm{.303}}}}{{\rm{t}}}{\rm{log}}\frac{{{{{\rm{[A]}}}_{\rm{0}}}}}{{{\rm{[A]}}}}\) \({\rm{ = }}\frac{{{\rm{2}}{\rm{.303}}}}{{{\rm{40}}}}{\rm{log}}\frac{{{\rm{0}}{\rm{.1}}}}{{{\rm{0}}{\rm{.005}}}}\) \({\rm{ = 0}}{\rm{.075}}\,{\rm{mi}}{{\rm{n}}^{{\rm{ - 1}}}}\) \({\rm{Rate = k[x] = 7}}{\rm{.5 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}\,{\rm{M}}\,{\rm{mi}}{{\rm{n}}^{{\rm{ - 1}}}}\)
CHXII04:CHEMICAL KINETICS
320331
If the rate constant for a first order reaction is \(\mathrm{k}\), the time \((\mathrm{t})\) required for the completion of \(99 \%\) of the reaction is given by:
320333
For a first order reaction, intercept of the graph between \(\log \dfrac{[\mathrm{A}]_{0}}{[\mathrm{~A}]_{1}}\) (Y-axis) and conc (X-axis) is equal to
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
CHXII04:CHEMICAL KINETICS
320330
The concentration of a reactant X decreases from \(0.1 \mathrm{M}\) to \(0.005 \mathrm{M}\) in 40 minutes. If the reaction follows \(1^{\text {st }}\) order kinetics, the rate of the reaction when the concentration of \(\mathrm{X}\) is 0.01 \(\mathrm{M}\) will be
For first order reaction, \({\rm{k = }}\frac{{{\rm{2}}{\rm{.303}}}}{{\rm{t}}}{\rm{log}}\frac{{{{{\rm{[A]}}}_{\rm{0}}}}}{{{\rm{[A]}}}}\) \({\rm{ = }}\frac{{{\rm{2}}{\rm{.303}}}}{{{\rm{40}}}}{\rm{log}}\frac{{{\rm{0}}{\rm{.1}}}}{{{\rm{0}}{\rm{.005}}}}\) \({\rm{ = 0}}{\rm{.075}}\,{\rm{mi}}{{\rm{n}}^{{\rm{ - 1}}}}\) \({\rm{Rate = k[x] = 7}}{\rm{.5 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}\,{\rm{M}}\,{\rm{mi}}{{\rm{n}}^{{\rm{ - 1}}}}\)
CHXII04:CHEMICAL KINETICS
320331
If the rate constant for a first order reaction is \(\mathrm{k}\), the time \((\mathrm{t})\) required for the completion of \(99 \%\) of the reaction is given by:
320333
For a first order reaction, intercept of the graph between \(\log \dfrac{[\mathrm{A}]_{0}}{[\mathrm{~A}]_{1}}\) (Y-axis) and conc (X-axis) is equal to
320330
The concentration of a reactant X decreases from \(0.1 \mathrm{M}\) to \(0.005 \mathrm{M}\) in 40 minutes. If the reaction follows \(1^{\text {st }}\) order kinetics, the rate of the reaction when the concentration of \(\mathrm{X}\) is 0.01 \(\mathrm{M}\) will be
For first order reaction, \({\rm{k = }}\frac{{{\rm{2}}{\rm{.303}}}}{{\rm{t}}}{\rm{log}}\frac{{{{{\rm{[A]}}}_{\rm{0}}}}}{{{\rm{[A]}}}}\) \({\rm{ = }}\frac{{{\rm{2}}{\rm{.303}}}}{{{\rm{40}}}}{\rm{log}}\frac{{{\rm{0}}{\rm{.1}}}}{{{\rm{0}}{\rm{.005}}}}\) \({\rm{ = 0}}{\rm{.075}}\,{\rm{mi}}{{\rm{n}}^{{\rm{ - 1}}}}\) \({\rm{Rate = k[x] = 7}}{\rm{.5 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}\,{\rm{M}}\,{\rm{mi}}{{\rm{n}}^{{\rm{ - 1}}}}\)
CHXII04:CHEMICAL KINETICS
320331
If the rate constant for a first order reaction is \(\mathrm{k}\), the time \((\mathrm{t})\) required for the completion of \(99 \%\) of the reaction is given by:
320333
For a first order reaction, intercept of the graph between \(\log \dfrac{[\mathrm{A}]_{0}}{[\mathrm{~A}]_{1}}\) (Y-axis) and conc (X-axis) is equal to
320330
The concentration of a reactant X decreases from \(0.1 \mathrm{M}\) to \(0.005 \mathrm{M}\) in 40 minutes. If the reaction follows \(1^{\text {st }}\) order kinetics, the rate of the reaction when the concentration of \(\mathrm{X}\) is 0.01 \(\mathrm{M}\) will be
For first order reaction, \({\rm{k = }}\frac{{{\rm{2}}{\rm{.303}}}}{{\rm{t}}}{\rm{log}}\frac{{{{{\rm{[A]}}}_{\rm{0}}}}}{{{\rm{[A]}}}}\) \({\rm{ = }}\frac{{{\rm{2}}{\rm{.303}}}}{{{\rm{40}}}}{\rm{log}}\frac{{{\rm{0}}{\rm{.1}}}}{{{\rm{0}}{\rm{.005}}}}\) \({\rm{ = 0}}{\rm{.075}}\,{\rm{mi}}{{\rm{n}}^{{\rm{ - 1}}}}\) \({\rm{Rate = k[x] = 7}}{\rm{.5 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}\,{\rm{M}}\,{\rm{mi}}{{\rm{n}}^{{\rm{ - 1}}}}\)
CHXII04:CHEMICAL KINETICS
320331
If the rate constant for a first order reaction is \(\mathrm{k}\), the time \((\mathrm{t})\) required for the completion of \(99 \%\) of the reaction is given by:
320333
For a first order reaction, intercept of the graph between \(\log \dfrac{[\mathrm{A}]_{0}}{[\mathrm{~A}]_{1}}\) (Y-axis) and conc (X-axis) is equal to