320323
For a homogeneous gaseous reaction \({\rm{A}} \to {\rm{B}} + {\rm{C}} + {\rm{D}}\), the initial pressure was \({{\rm{P}}_{\rm{0}}}\) while pressure after time 't' was P if \(\left( {{\rm{P > }}{{\rm{P}}_{\rm{0}}}} \right)\). The expression for the rate constant k is
Given reaction is \(\begin{array}{lllll} & \mathrm{A} \rightarrow \mathrm{B}+\mathrm{C}+\mathrm{D} \\\text { At } \mathrm{t}=0 & \mathrm{P}_{0} & 0 & 0 & 0 \\\text { At } \mathrm{t}=\mathrm{t} & \mathrm{P}_{0}-\mathrm{x} & \mathrm{x} & \mathrm{x} & \mathrm{x}\end{array}\) At time t, pressure is \(\mathrm{P}\) \(\begin{aligned}& P_{0}-x+x+x+x=P \\& x=\dfrac{P-P_{0}}{2}\end{aligned}\) For first order reaction, \(k=\dfrac{2.303}{t} \log \left[\dfrac{P_{0}}{P_{0}-x}\right]\) \(k=\dfrac{2.303}{t} \log \left[\dfrac{P_{0}}{P_{0}\left(\dfrac{P-P_{0}}{2}\right)}\right]=\dfrac{2.303}{t} \log \left[\dfrac{2 P_{0}}{3 P_{0}-P}\right]\)
CHXII04:CHEMICAL KINETICS
320324
The decomposition of a substance follows first order kinetics. If its concentration is reduced to 1/8th of its initial value, in 24 minutes, the rate constant of decomposition process is
320323
For a homogeneous gaseous reaction \({\rm{A}} \to {\rm{B}} + {\rm{C}} + {\rm{D}}\), the initial pressure was \({{\rm{P}}_{\rm{0}}}\) while pressure after time 't' was P if \(\left( {{\rm{P > }}{{\rm{P}}_{\rm{0}}}} \right)\). The expression for the rate constant k is
Given reaction is \(\begin{array}{lllll} & \mathrm{A} \rightarrow \mathrm{B}+\mathrm{C}+\mathrm{D} \\\text { At } \mathrm{t}=0 & \mathrm{P}_{0} & 0 & 0 & 0 \\\text { At } \mathrm{t}=\mathrm{t} & \mathrm{P}_{0}-\mathrm{x} & \mathrm{x} & \mathrm{x} & \mathrm{x}\end{array}\) At time t, pressure is \(\mathrm{P}\) \(\begin{aligned}& P_{0}-x+x+x+x=P \\& x=\dfrac{P-P_{0}}{2}\end{aligned}\) For first order reaction, \(k=\dfrac{2.303}{t} \log \left[\dfrac{P_{0}}{P_{0}-x}\right]\) \(k=\dfrac{2.303}{t} \log \left[\dfrac{P_{0}}{P_{0}\left(\dfrac{P-P_{0}}{2}\right)}\right]=\dfrac{2.303}{t} \log \left[\dfrac{2 P_{0}}{3 P_{0}-P}\right]\)
CHXII04:CHEMICAL KINETICS
320324
The decomposition of a substance follows first order kinetics. If its concentration is reduced to 1/8th of its initial value, in 24 minutes, the rate constant of decomposition process is
320323
For a homogeneous gaseous reaction \({\rm{A}} \to {\rm{B}} + {\rm{C}} + {\rm{D}}\), the initial pressure was \({{\rm{P}}_{\rm{0}}}\) while pressure after time 't' was P if \(\left( {{\rm{P > }}{{\rm{P}}_{\rm{0}}}} \right)\). The expression for the rate constant k is
Given reaction is \(\begin{array}{lllll} & \mathrm{A} \rightarrow \mathrm{B}+\mathrm{C}+\mathrm{D} \\\text { At } \mathrm{t}=0 & \mathrm{P}_{0} & 0 & 0 & 0 \\\text { At } \mathrm{t}=\mathrm{t} & \mathrm{P}_{0}-\mathrm{x} & \mathrm{x} & \mathrm{x} & \mathrm{x}\end{array}\) At time t, pressure is \(\mathrm{P}\) \(\begin{aligned}& P_{0}-x+x+x+x=P \\& x=\dfrac{P-P_{0}}{2}\end{aligned}\) For first order reaction, \(k=\dfrac{2.303}{t} \log \left[\dfrac{P_{0}}{P_{0}-x}\right]\) \(k=\dfrac{2.303}{t} \log \left[\dfrac{P_{0}}{P_{0}\left(\dfrac{P-P_{0}}{2}\right)}\right]=\dfrac{2.303}{t} \log \left[\dfrac{2 P_{0}}{3 P_{0}-P}\right]\)
CHXII04:CHEMICAL KINETICS
320324
The decomposition of a substance follows first order kinetics. If its concentration is reduced to 1/8th of its initial value, in 24 minutes, the rate constant of decomposition process is
320323
For a homogeneous gaseous reaction \({\rm{A}} \to {\rm{B}} + {\rm{C}} + {\rm{D}}\), the initial pressure was \({{\rm{P}}_{\rm{0}}}\) while pressure after time 't' was P if \(\left( {{\rm{P > }}{{\rm{P}}_{\rm{0}}}} \right)\). The expression for the rate constant k is
Given reaction is \(\begin{array}{lllll} & \mathrm{A} \rightarrow \mathrm{B}+\mathrm{C}+\mathrm{D} \\\text { At } \mathrm{t}=0 & \mathrm{P}_{0} & 0 & 0 & 0 \\\text { At } \mathrm{t}=\mathrm{t} & \mathrm{P}_{0}-\mathrm{x} & \mathrm{x} & \mathrm{x} & \mathrm{x}\end{array}\) At time t, pressure is \(\mathrm{P}\) \(\begin{aligned}& P_{0}-x+x+x+x=P \\& x=\dfrac{P-P_{0}}{2}\end{aligned}\) For first order reaction, \(k=\dfrac{2.303}{t} \log \left[\dfrac{P_{0}}{P_{0}-x}\right]\) \(k=\dfrac{2.303}{t} \log \left[\dfrac{P_{0}}{P_{0}\left(\dfrac{P-P_{0}}{2}\right)}\right]=\dfrac{2.303}{t} \log \left[\dfrac{2 P_{0}}{3 P_{0}-P}\right]\)
CHXII04:CHEMICAL KINETICS
320324
The decomposition of a substance follows first order kinetics. If its concentration is reduced to 1/8th of its initial value, in 24 minutes, the rate constant of decomposition process is