Integrated Rate Equations
CHXII04:CHEMICAL KINETICS

320313 A first order reaction is \(50 \%\) completed in \(1.26 \times 10^{14} \mathrm{~s}\). How much time would it take for \(100 \%\) completion?

1 \(1.26 \times 10^{15} \mathrm{~s}\)
2 \(2.52 \times 10^{14} \mathrm{~s}\)
3 \(2.52 \times 10^{28} s\)
4 Infinite
CHXII04:CHEMICAL KINETICS

320314 Decomposition of \(\mathrm{H}_{2} \mathrm{O}_{2}\) follows a first order reaction. In fifty minutes the concentration of \(\mathrm{H}_{2} \mathrm{O}_{2}\) decreases from 0.5 to \(0.125 \mathrm{M}\) in one such decomposition. When the concentration of \(\mathrm{H}_{2} \mathrm{O}_{2}\) reaches \(0.05 \mathrm{M}\), the rate of formation of \(\mathrm{O}_{2}\) will be :

1 \(60.5 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
2 \(2.66 L \mathrm{~min}^{-1}\) at \(\mathrm{STP}\)
3 \(1.34 \times 10^{-2} \mathrm{~mol} \mathrm{~min}^{-1}\)
4 \(6.93 \times 10^{-4} \mathrm{~mol} \mathrm{~min}^{-1}\)
CHXII04:CHEMICAL KINETICS

320315 The value of rate constant for a first order is \(2.303 \times 10^{-2} \mathrm{sec}^{-1}\). What will be the time required to reduce the concentration to \(\dfrac{1}{10}\) th of the initial concentration?

1 \(100 \mathrm{sec}\)
2 \(10 \mathrm{sec}\)
3 \(2303 \mathrm{sec}\)
4 \(23.03 \mathrm{sec}\)
CHXII04:CHEMICAL KINETICS

320316 For a reaction,
\({\text{X(g)}} \to {\text{Y(g)}} + {\text{Z(g)}}\)
the half-life period is \(10 \mathrm{~min}\). In what period of time would the concentration of \({\text{X}}\) be reduced to \(10 \%\) of original concentration?

1 \(20 \mathrm{~min}\)
2 \(33 \mathrm{~min}\)
3 \(15 \mathrm{~min}\)
4 \(25 \mathrm{~min}\)
CHXII04:CHEMICAL KINETICS

320313 A first order reaction is \(50 \%\) completed in \(1.26 \times 10^{14} \mathrm{~s}\). How much time would it take for \(100 \%\) completion?

1 \(1.26 \times 10^{15} \mathrm{~s}\)
2 \(2.52 \times 10^{14} \mathrm{~s}\)
3 \(2.52 \times 10^{28} s\)
4 Infinite
CHXII04:CHEMICAL KINETICS

320314 Decomposition of \(\mathrm{H}_{2} \mathrm{O}_{2}\) follows a first order reaction. In fifty minutes the concentration of \(\mathrm{H}_{2} \mathrm{O}_{2}\) decreases from 0.5 to \(0.125 \mathrm{M}\) in one such decomposition. When the concentration of \(\mathrm{H}_{2} \mathrm{O}_{2}\) reaches \(0.05 \mathrm{M}\), the rate of formation of \(\mathrm{O}_{2}\) will be :

1 \(60.5 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
2 \(2.66 L \mathrm{~min}^{-1}\) at \(\mathrm{STP}\)
3 \(1.34 \times 10^{-2} \mathrm{~mol} \mathrm{~min}^{-1}\)
4 \(6.93 \times 10^{-4} \mathrm{~mol} \mathrm{~min}^{-1}\)
CHXII04:CHEMICAL KINETICS

320315 The value of rate constant for a first order is \(2.303 \times 10^{-2} \mathrm{sec}^{-1}\). What will be the time required to reduce the concentration to \(\dfrac{1}{10}\) th of the initial concentration?

1 \(100 \mathrm{sec}\)
2 \(10 \mathrm{sec}\)
3 \(2303 \mathrm{sec}\)
4 \(23.03 \mathrm{sec}\)
CHXII04:CHEMICAL KINETICS

320316 For a reaction,
\({\text{X(g)}} \to {\text{Y(g)}} + {\text{Z(g)}}\)
the half-life period is \(10 \mathrm{~min}\). In what period of time would the concentration of \({\text{X}}\) be reduced to \(10 \%\) of original concentration?

1 \(20 \mathrm{~min}\)
2 \(33 \mathrm{~min}\)
3 \(15 \mathrm{~min}\)
4 \(25 \mathrm{~min}\)
CHXII04:CHEMICAL KINETICS

320313 A first order reaction is \(50 \%\) completed in \(1.26 \times 10^{14} \mathrm{~s}\). How much time would it take for \(100 \%\) completion?

1 \(1.26 \times 10^{15} \mathrm{~s}\)
2 \(2.52 \times 10^{14} \mathrm{~s}\)
3 \(2.52 \times 10^{28} s\)
4 Infinite
CHXII04:CHEMICAL KINETICS

320314 Decomposition of \(\mathrm{H}_{2} \mathrm{O}_{2}\) follows a first order reaction. In fifty minutes the concentration of \(\mathrm{H}_{2} \mathrm{O}_{2}\) decreases from 0.5 to \(0.125 \mathrm{M}\) in one such decomposition. When the concentration of \(\mathrm{H}_{2} \mathrm{O}_{2}\) reaches \(0.05 \mathrm{M}\), the rate of formation of \(\mathrm{O}_{2}\) will be :

1 \(60.5 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
2 \(2.66 L \mathrm{~min}^{-1}\) at \(\mathrm{STP}\)
3 \(1.34 \times 10^{-2} \mathrm{~mol} \mathrm{~min}^{-1}\)
4 \(6.93 \times 10^{-4} \mathrm{~mol} \mathrm{~min}^{-1}\)
CHXII04:CHEMICAL KINETICS

320315 The value of rate constant for a first order is \(2.303 \times 10^{-2} \mathrm{sec}^{-1}\). What will be the time required to reduce the concentration to \(\dfrac{1}{10}\) th of the initial concentration?

1 \(100 \mathrm{sec}\)
2 \(10 \mathrm{sec}\)
3 \(2303 \mathrm{sec}\)
4 \(23.03 \mathrm{sec}\)
CHXII04:CHEMICAL KINETICS

320316 For a reaction,
\({\text{X(g)}} \to {\text{Y(g)}} + {\text{Z(g)}}\)
the half-life period is \(10 \mathrm{~min}\). In what period of time would the concentration of \({\text{X}}\) be reduced to \(10 \%\) of original concentration?

1 \(20 \mathrm{~min}\)
2 \(33 \mathrm{~min}\)
3 \(15 \mathrm{~min}\)
4 \(25 \mathrm{~min}\)
CHXII04:CHEMICAL KINETICS

320313 A first order reaction is \(50 \%\) completed in \(1.26 \times 10^{14} \mathrm{~s}\). How much time would it take for \(100 \%\) completion?

1 \(1.26 \times 10^{15} \mathrm{~s}\)
2 \(2.52 \times 10^{14} \mathrm{~s}\)
3 \(2.52 \times 10^{28} s\)
4 Infinite
CHXII04:CHEMICAL KINETICS

320314 Decomposition of \(\mathrm{H}_{2} \mathrm{O}_{2}\) follows a first order reaction. In fifty minutes the concentration of \(\mathrm{H}_{2} \mathrm{O}_{2}\) decreases from 0.5 to \(0.125 \mathrm{M}\) in one such decomposition. When the concentration of \(\mathrm{H}_{2} \mathrm{O}_{2}\) reaches \(0.05 \mathrm{M}\), the rate of formation of \(\mathrm{O}_{2}\) will be :

1 \(60.5 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
2 \(2.66 L \mathrm{~min}^{-1}\) at \(\mathrm{STP}\)
3 \(1.34 \times 10^{-2} \mathrm{~mol} \mathrm{~min}^{-1}\)
4 \(6.93 \times 10^{-4} \mathrm{~mol} \mathrm{~min}^{-1}\)
CHXII04:CHEMICAL KINETICS

320315 The value of rate constant for a first order is \(2.303 \times 10^{-2} \mathrm{sec}^{-1}\). What will be the time required to reduce the concentration to \(\dfrac{1}{10}\) th of the initial concentration?

1 \(100 \mathrm{sec}\)
2 \(10 \mathrm{sec}\)
3 \(2303 \mathrm{sec}\)
4 \(23.03 \mathrm{sec}\)
CHXII04:CHEMICAL KINETICS

320316 For a reaction,
\({\text{X(g)}} \to {\text{Y(g)}} + {\text{Z(g)}}\)
the half-life period is \(10 \mathrm{~min}\). In what period of time would the concentration of \({\text{X}}\) be reduced to \(10 \%\) of original concentration?

1 \(20 \mathrm{~min}\)
2 \(33 \mathrm{~min}\)
3 \(15 \mathrm{~min}\)
4 \(25 \mathrm{~min}\)