Integrated Rate Equations
CHXII04:CHEMICAL KINETICS

320330 The concentration of a reactant X decreases from \(0.1 \mathrm{M}\) to \(0.005 \mathrm{M}\) in 40 minutes. If the reaction follows \(1^{\text {st }}\) order kinetics, the rate of the reaction when the concentration of \(\mathrm{X}\) is 0.01 \(\mathrm{M}\) will be

1 \({\rm{7}}{\rm{.5 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}{\rm{M}}\,{\rm{mi}}{{\rm{n}}^{{\rm{ - 1}}}}\)
2 \({\rm{3}}{\rm{.47 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}{\rm{M}}\,{\rm{mi}}{{\rm{n}}^{{\rm{ - 1}}}}\)
3 \({\rm{3}}{\rm{.47 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}{\rm{M}}\,{\rm{mi}}{{\rm{n}}^{{\rm{ - 1}}}}\)
4 \({\rm{1}}{\rm{.73 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}{\rm{M}}\,{\rm{mi}}{{\rm{n}}^{{\rm{ - 1}}}}\)
CHXII04:CHEMICAL KINETICS

320331 If the rate constant for a first order reaction is \(\mathrm{k}\), the time \((\mathrm{t})\) required for the completion of \(99 \%\) of the reaction is given by:

1 \({\rm{t = }}\frac{{{\rm{0}}{\rm{.693}}}}{{\rm{k}}}\)
2 \({\rm{t = }}\frac{{{\rm{6}}{\rm{.909}}}}{{\rm{k}}}\)
3 \({\rm{t = }}\frac{{{\rm{4}}{\rm{.606}}}}{{\rm{k}}}\)
4 \({\rm{t = }}\frac{{{\rm{2}}{\rm{.303}}}}{{\rm{k}}}\)
CHXII04:CHEMICAL KINETICS

320332 \({\rm{99\% }}\) at a first order reaction was completed in \({\rm{32\;min}}\). When will \({\rm{99}}{\rm{.9\% }}\) of the reaction complete?

1 \(48 \mathrm{~min}\)
2 \(46 \mathrm{~min}\)
3 \(50 \mathrm{~min}\)
4 \(45 \mathrm{~min}\)
CHXII04:CHEMICAL KINETICS

320333 For a first order reaction, intercept of the graph between \(\log \dfrac{[\mathrm{A}]_{0}}{[\mathrm{~A}]_{1}}\) (Y-axis) and conc (X-axis) is equal to

1 \(\dfrac{\mathrm{k}}{2.303 \mathrm{~K}}\)
2 \(-\log [\mathrm{A}]_{0}\)
3 Zero
4 \(\dfrac{2.303}{\mathrm{~K}}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
CHXII04:CHEMICAL KINETICS

320330 The concentration of a reactant X decreases from \(0.1 \mathrm{M}\) to \(0.005 \mathrm{M}\) in 40 minutes. If the reaction follows \(1^{\text {st }}\) order kinetics, the rate of the reaction when the concentration of \(\mathrm{X}\) is 0.01 \(\mathrm{M}\) will be

1 \({\rm{7}}{\rm{.5 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}{\rm{M}}\,{\rm{mi}}{{\rm{n}}^{{\rm{ - 1}}}}\)
2 \({\rm{3}}{\rm{.47 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}{\rm{M}}\,{\rm{mi}}{{\rm{n}}^{{\rm{ - 1}}}}\)
3 \({\rm{3}}{\rm{.47 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}{\rm{M}}\,{\rm{mi}}{{\rm{n}}^{{\rm{ - 1}}}}\)
4 \({\rm{1}}{\rm{.73 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}{\rm{M}}\,{\rm{mi}}{{\rm{n}}^{{\rm{ - 1}}}}\)
CHXII04:CHEMICAL KINETICS

320331 If the rate constant for a first order reaction is \(\mathrm{k}\), the time \((\mathrm{t})\) required for the completion of \(99 \%\) of the reaction is given by:

1 \({\rm{t = }}\frac{{{\rm{0}}{\rm{.693}}}}{{\rm{k}}}\)
2 \({\rm{t = }}\frac{{{\rm{6}}{\rm{.909}}}}{{\rm{k}}}\)
3 \({\rm{t = }}\frac{{{\rm{4}}{\rm{.606}}}}{{\rm{k}}}\)
4 \({\rm{t = }}\frac{{{\rm{2}}{\rm{.303}}}}{{\rm{k}}}\)
CHXII04:CHEMICAL KINETICS

320332 \({\rm{99\% }}\) at a first order reaction was completed in \({\rm{32\;min}}\). When will \({\rm{99}}{\rm{.9\% }}\) of the reaction complete?

1 \(48 \mathrm{~min}\)
2 \(46 \mathrm{~min}\)
3 \(50 \mathrm{~min}\)
4 \(45 \mathrm{~min}\)
CHXII04:CHEMICAL KINETICS

320333 For a first order reaction, intercept of the graph between \(\log \dfrac{[\mathrm{A}]_{0}}{[\mathrm{~A}]_{1}}\) (Y-axis) and conc (X-axis) is equal to

1 \(\dfrac{\mathrm{k}}{2.303 \mathrm{~K}}\)
2 \(-\log [\mathrm{A}]_{0}\)
3 Zero
4 \(\dfrac{2.303}{\mathrm{~K}}\)
CHXII04:CHEMICAL KINETICS

320330 The concentration of a reactant X decreases from \(0.1 \mathrm{M}\) to \(0.005 \mathrm{M}\) in 40 minutes. If the reaction follows \(1^{\text {st }}\) order kinetics, the rate of the reaction when the concentration of \(\mathrm{X}\) is 0.01 \(\mathrm{M}\) will be

1 \({\rm{7}}{\rm{.5 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}{\rm{M}}\,{\rm{mi}}{{\rm{n}}^{{\rm{ - 1}}}}\)
2 \({\rm{3}}{\rm{.47 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}{\rm{M}}\,{\rm{mi}}{{\rm{n}}^{{\rm{ - 1}}}}\)
3 \({\rm{3}}{\rm{.47 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}{\rm{M}}\,{\rm{mi}}{{\rm{n}}^{{\rm{ - 1}}}}\)
4 \({\rm{1}}{\rm{.73 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}{\rm{M}}\,{\rm{mi}}{{\rm{n}}^{{\rm{ - 1}}}}\)
CHXII04:CHEMICAL KINETICS

320331 If the rate constant for a first order reaction is \(\mathrm{k}\), the time \((\mathrm{t})\) required for the completion of \(99 \%\) of the reaction is given by:

1 \({\rm{t = }}\frac{{{\rm{0}}{\rm{.693}}}}{{\rm{k}}}\)
2 \({\rm{t = }}\frac{{{\rm{6}}{\rm{.909}}}}{{\rm{k}}}\)
3 \({\rm{t = }}\frac{{{\rm{4}}{\rm{.606}}}}{{\rm{k}}}\)
4 \({\rm{t = }}\frac{{{\rm{2}}{\rm{.303}}}}{{\rm{k}}}\)
CHXII04:CHEMICAL KINETICS

320332 \({\rm{99\% }}\) at a first order reaction was completed in \({\rm{32\;min}}\). When will \({\rm{99}}{\rm{.9\% }}\) of the reaction complete?

1 \(48 \mathrm{~min}\)
2 \(46 \mathrm{~min}\)
3 \(50 \mathrm{~min}\)
4 \(45 \mathrm{~min}\)
CHXII04:CHEMICAL KINETICS

320333 For a first order reaction, intercept of the graph between \(\log \dfrac{[\mathrm{A}]_{0}}{[\mathrm{~A}]_{1}}\) (Y-axis) and conc (X-axis) is equal to

1 \(\dfrac{\mathrm{k}}{2.303 \mathrm{~K}}\)
2 \(-\log [\mathrm{A}]_{0}\)
3 Zero
4 \(\dfrac{2.303}{\mathrm{~K}}\)
CHXII04:CHEMICAL KINETICS

320330 The concentration of a reactant X decreases from \(0.1 \mathrm{M}\) to \(0.005 \mathrm{M}\) in 40 minutes. If the reaction follows \(1^{\text {st }}\) order kinetics, the rate of the reaction when the concentration of \(\mathrm{X}\) is 0.01 \(\mathrm{M}\) will be

1 \({\rm{7}}{\rm{.5 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}{\rm{M}}\,{\rm{mi}}{{\rm{n}}^{{\rm{ - 1}}}}\)
2 \({\rm{3}}{\rm{.47 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}{\rm{M}}\,{\rm{mi}}{{\rm{n}}^{{\rm{ - 1}}}}\)
3 \({\rm{3}}{\rm{.47 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}{\rm{M}}\,{\rm{mi}}{{\rm{n}}^{{\rm{ - 1}}}}\)
4 \({\rm{1}}{\rm{.73 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}{\rm{M}}\,{\rm{mi}}{{\rm{n}}^{{\rm{ - 1}}}}\)
CHXII04:CHEMICAL KINETICS

320331 If the rate constant for a first order reaction is \(\mathrm{k}\), the time \((\mathrm{t})\) required for the completion of \(99 \%\) of the reaction is given by:

1 \({\rm{t = }}\frac{{{\rm{0}}{\rm{.693}}}}{{\rm{k}}}\)
2 \({\rm{t = }}\frac{{{\rm{6}}{\rm{.909}}}}{{\rm{k}}}\)
3 \({\rm{t = }}\frac{{{\rm{4}}{\rm{.606}}}}{{\rm{k}}}\)
4 \({\rm{t = }}\frac{{{\rm{2}}{\rm{.303}}}}{{\rm{k}}}\)
CHXII04:CHEMICAL KINETICS

320332 \({\rm{99\% }}\) at a first order reaction was completed in \({\rm{32\;min}}\). When will \({\rm{99}}{\rm{.9\% }}\) of the reaction complete?

1 \(48 \mathrm{~min}\)
2 \(46 \mathrm{~min}\)
3 \(50 \mathrm{~min}\)
4 \(45 \mathrm{~min}\)
CHXII04:CHEMICAL KINETICS

320333 For a first order reaction, intercept of the graph between \(\log \dfrac{[\mathrm{A}]_{0}}{[\mathrm{~A}]_{1}}\) (Y-axis) and conc (X-axis) is equal to

1 \(\dfrac{\mathrm{k}}{2.303 \mathrm{~K}}\)
2 \(-\log [\mathrm{A}]_{0}\)
3 Zero
4 \(\dfrac{2.303}{\mathrm{~K}}\)