320270
The first order rate constant for the decomposition of ethyl iodide is given by the reaction
\({{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}{\text{I(g)}} \to {{\text{C}}_{\text{2}}}{{\text{H}}_{\text{4}}}{\text{(g)}} + {\text{HI(g)}}\)
at \(600 \mathrm{~K}\) is \(1.60 \times 10^{-5} \mathrm{~s}^{-1}\). Its energy of activation is \(209 \mathrm{~kJ} \mathrm{~mol}^{-1}\). What is the rate constant of the reaction at \(700 \mathrm{~K}\) ?
320272
For the equilibrium,
\({\text{A}}{\mkern 1mu} {\text{(g)}} \rightleftharpoons {\text{B}}{\mkern 1mu} {\text{(g),}}\,\) \({\rm{\Delta H = - 40}}\;{\rm{kJ/mol}}\). If the ratio of the activation energies of the forward \(\left( {{{\text{E}}_{\text{f}}}} \right)\) and reverse \(\left( {{{\text{E}}_{\text{b}}}} \right)\) reactions is \(\frac{{\text{2}}}{{\text{3}}}\) then
320270
The first order rate constant for the decomposition of ethyl iodide is given by the reaction
\({{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}{\text{I(g)}} \to {{\text{C}}_{\text{2}}}{{\text{H}}_{\text{4}}}{\text{(g)}} + {\text{HI(g)}}\)
at \(600 \mathrm{~K}\) is \(1.60 \times 10^{-5} \mathrm{~s}^{-1}\). Its energy of activation is \(209 \mathrm{~kJ} \mathrm{~mol}^{-1}\). What is the rate constant of the reaction at \(700 \mathrm{~K}\) ?
320272
For the equilibrium,
\({\text{A}}{\mkern 1mu} {\text{(g)}} \rightleftharpoons {\text{B}}{\mkern 1mu} {\text{(g),}}\,\) \({\rm{\Delta H = - 40}}\;{\rm{kJ/mol}}\). If the ratio of the activation energies of the forward \(\left( {{{\text{E}}_{\text{f}}}} \right)\) and reverse \(\left( {{{\text{E}}_{\text{b}}}} \right)\) reactions is \(\frac{{\text{2}}}{{\text{3}}}\) then
320270
The first order rate constant for the decomposition of ethyl iodide is given by the reaction
\({{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}{\text{I(g)}} \to {{\text{C}}_{\text{2}}}{{\text{H}}_{\text{4}}}{\text{(g)}} + {\text{HI(g)}}\)
at \(600 \mathrm{~K}\) is \(1.60 \times 10^{-5} \mathrm{~s}^{-1}\). Its energy of activation is \(209 \mathrm{~kJ} \mathrm{~mol}^{-1}\). What is the rate constant of the reaction at \(700 \mathrm{~K}\) ?
320272
For the equilibrium,
\({\text{A}}{\mkern 1mu} {\text{(g)}} \rightleftharpoons {\text{B}}{\mkern 1mu} {\text{(g),}}\,\) \({\rm{\Delta H = - 40}}\;{\rm{kJ/mol}}\). If the ratio of the activation energies of the forward \(\left( {{{\text{E}}_{\text{f}}}} \right)\) and reverse \(\left( {{{\text{E}}_{\text{b}}}} \right)\) reactions is \(\frac{{\text{2}}}{{\text{3}}}\) then
320270
The first order rate constant for the decomposition of ethyl iodide is given by the reaction
\({{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}{\text{I(g)}} \to {{\text{C}}_{\text{2}}}{{\text{H}}_{\text{4}}}{\text{(g)}} + {\text{HI(g)}}\)
at \(600 \mathrm{~K}\) is \(1.60 \times 10^{-5} \mathrm{~s}^{-1}\). Its energy of activation is \(209 \mathrm{~kJ} \mathrm{~mol}^{-1}\). What is the rate constant of the reaction at \(700 \mathrm{~K}\) ?
320272
For the equilibrium,
\({\text{A}}{\mkern 1mu} {\text{(g)}} \rightleftharpoons {\text{B}}{\mkern 1mu} {\text{(g),}}\,\) \({\rm{\Delta H = - 40}}\;{\rm{kJ/mol}}\). If the ratio of the activation energies of the forward \(\left( {{{\text{E}}_{\text{f}}}} \right)\) and reverse \(\left( {{{\text{E}}_{\text{b}}}} \right)\) reactions is \(\frac{{\text{2}}}{{\text{3}}}\) then
320270
The first order rate constant for the decomposition of ethyl iodide is given by the reaction
\({{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}{\text{I(g)}} \to {{\text{C}}_{\text{2}}}{{\text{H}}_{\text{4}}}{\text{(g)}} + {\text{HI(g)}}\)
at \(600 \mathrm{~K}\) is \(1.60 \times 10^{-5} \mathrm{~s}^{-1}\). Its energy of activation is \(209 \mathrm{~kJ} \mathrm{~mol}^{-1}\). What is the rate constant of the reaction at \(700 \mathrm{~K}\) ?
320272
For the equilibrium,
\({\text{A}}{\mkern 1mu} {\text{(g)}} \rightleftharpoons {\text{B}}{\mkern 1mu} {\text{(g),}}\,\) \({\rm{\Delta H = - 40}}\;{\rm{kJ/mol}}\). If the ratio of the activation energies of the forward \(\left( {{{\text{E}}_{\text{f}}}} \right)\) and reverse \(\left( {{{\text{E}}_{\text{b}}}} \right)\) reactions is \(\frac{{\text{2}}}{{\text{3}}}\) then