320167
Consider the decomposition of \(\mathrm{N}_{2} \mathrm{O}_{5}\) as
\(\mathrm{N}_{2} \mathrm{O}_{5} \longrightarrow 2 \mathrm{NO}_{2}+\dfrac{1}{2} \mathrm{O}_{2}\)
The rate of reaction is given by
\(\frac{{ - {\text{d}}\left[ {{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}} \right]}}{{{\text{dt}}}} = \frac{1}{2}\frac{{{\text{d}}\left[ {{\text{N}}{{\text{O}}_{\text{2}}}} \right]}}{{{\text{dt}}}} = 2\frac{{{\text{d}}\left[ {{{\text{O}}_{\text{2}}}} \right]}}{{{\text{dt}}}} = {{\text{k}}_{\text{1}}}\left[ {{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}} \right]\)
Therefore, \(\frac{{ - {\text{d}}\left[ {{{\text{N}}_{\text{2}}}{{\text{O}}_5}} \right]}}{{{\text{dt}}}} = {{\text{k}}_{\text{1}}}\left[ {{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}} \right]\)
\(\frac{{{\text{ + d}}\left[ {{\text{N}}{{\text{O}}_{\text{2}}}} \right]}}{{{\text{dt}}}} = 2{{\text{k}}_{\text{1}}}\left[ {{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}} \right] = {\text{k}}_1^\prime \left[ {{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}} \right]\)
\(\frac{{{\text{ + d}}\left[ {{{\text{O}}_{\text{2}}}} \right]}}{{{\text{dt}}}} = \frac{1}{2}{{\text{k}}_1}\left[ {{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}} \right] = {\text{k}}_1^{\prime \prime }\left[ {{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}} \right]\)
Choose the correct option.
320167
Consider the decomposition of \(\mathrm{N}_{2} \mathrm{O}_{5}\) as
\(\mathrm{N}_{2} \mathrm{O}_{5} \longrightarrow 2 \mathrm{NO}_{2}+\dfrac{1}{2} \mathrm{O}_{2}\)
The rate of reaction is given by
\(\frac{{ - {\text{d}}\left[ {{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}} \right]}}{{{\text{dt}}}} = \frac{1}{2}\frac{{{\text{d}}\left[ {{\text{N}}{{\text{O}}_{\text{2}}}} \right]}}{{{\text{dt}}}} = 2\frac{{{\text{d}}\left[ {{{\text{O}}_{\text{2}}}} \right]}}{{{\text{dt}}}} = {{\text{k}}_{\text{1}}}\left[ {{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}} \right]\)
Therefore, \(\frac{{ - {\text{d}}\left[ {{{\text{N}}_{\text{2}}}{{\text{O}}_5}} \right]}}{{{\text{dt}}}} = {{\text{k}}_{\text{1}}}\left[ {{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}} \right]\)
\(\frac{{{\text{ + d}}\left[ {{\text{N}}{{\text{O}}_{\text{2}}}} \right]}}{{{\text{dt}}}} = 2{{\text{k}}_{\text{1}}}\left[ {{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}} \right] = {\text{k}}_1^\prime \left[ {{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}} \right]\)
\(\frac{{{\text{ + d}}\left[ {{{\text{O}}_{\text{2}}}} \right]}}{{{\text{dt}}}} = \frac{1}{2}{{\text{k}}_1}\left[ {{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}} \right] = {\text{k}}_1^{\prime \prime }\left[ {{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}} \right]\)
Choose the correct option.
320167
Consider the decomposition of \(\mathrm{N}_{2} \mathrm{O}_{5}\) as
\(\mathrm{N}_{2} \mathrm{O}_{5} \longrightarrow 2 \mathrm{NO}_{2}+\dfrac{1}{2} \mathrm{O}_{2}\)
The rate of reaction is given by
\(\frac{{ - {\text{d}}\left[ {{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}} \right]}}{{{\text{dt}}}} = \frac{1}{2}\frac{{{\text{d}}\left[ {{\text{N}}{{\text{O}}_{\text{2}}}} \right]}}{{{\text{dt}}}} = 2\frac{{{\text{d}}\left[ {{{\text{O}}_{\text{2}}}} \right]}}{{{\text{dt}}}} = {{\text{k}}_{\text{1}}}\left[ {{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}} \right]\)
Therefore, \(\frac{{ - {\text{d}}\left[ {{{\text{N}}_{\text{2}}}{{\text{O}}_5}} \right]}}{{{\text{dt}}}} = {{\text{k}}_{\text{1}}}\left[ {{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}} \right]\)
\(\frac{{{\text{ + d}}\left[ {{\text{N}}{{\text{O}}_{\text{2}}}} \right]}}{{{\text{dt}}}} = 2{{\text{k}}_{\text{1}}}\left[ {{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}} \right] = {\text{k}}_1^\prime \left[ {{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}} \right]\)
\(\frac{{{\text{ + d}}\left[ {{{\text{O}}_{\text{2}}}} \right]}}{{{\text{dt}}}} = \frac{1}{2}{{\text{k}}_1}\left[ {{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}} \right] = {\text{k}}_1^{\prime \prime }\left[ {{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}} \right]\)
Choose the correct option.
320167
Consider the decomposition of \(\mathrm{N}_{2} \mathrm{O}_{5}\) as
\(\mathrm{N}_{2} \mathrm{O}_{5} \longrightarrow 2 \mathrm{NO}_{2}+\dfrac{1}{2} \mathrm{O}_{2}\)
The rate of reaction is given by
\(\frac{{ - {\text{d}}\left[ {{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}} \right]}}{{{\text{dt}}}} = \frac{1}{2}\frac{{{\text{d}}\left[ {{\text{N}}{{\text{O}}_{\text{2}}}} \right]}}{{{\text{dt}}}} = 2\frac{{{\text{d}}\left[ {{{\text{O}}_{\text{2}}}} \right]}}{{{\text{dt}}}} = {{\text{k}}_{\text{1}}}\left[ {{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}} \right]\)
Therefore, \(\frac{{ - {\text{d}}\left[ {{{\text{N}}_{\text{2}}}{{\text{O}}_5}} \right]}}{{{\text{dt}}}} = {{\text{k}}_{\text{1}}}\left[ {{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}} \right]\)
\(\frac{{{\text{ + d}}\left[ {{\text{N}}{{\text{O}}_{\text{2}}}} \right]}}{{{\text{dt}}}} = 2{{\text{k}}_{\text{1}}}\left[ {{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}} \right] = {\text{k}}_1^\prime \left[ {{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}} \right]\)
\(\frac{{{\text{ + d}}\left[ {{{\text{O}}_{\text{2}}}} \right]}}{{{\text{dt}}}} = \frac{1}{2}{{\text{k}}_1}\left[ {{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}} \right] = {\text{k}}_1^{\prime \prime }\left[ {{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}} \right]\)
Choose the correct option.