320150
The rate constant of the reaction \({\rm{2}}{{\rm{H}}_{\rm{2}}}{{\rm{O}}_{\rm{2}}}{\rm{(aq)}} \to {\rm{2}}{{\rm{H}}_{\rm{2}}}{\rm{O(l) + }}{{\rm{O}}_{\rm{2}}}{\rm{(g)}}\)
At what concentration of \({{\rm{H}}_{\rm{2}}}{{\rm{O}}_{\rm{2}}}{\rm{,the}}\,\,{\rm{rate}}\,\,{\rm{of}}\,\,{\rm{reaction}}\,\,{\rm{will}}\,\,{\rm{be}}{\mkern 1mu} {\mkern 1mu} \,{\rm{2 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}\,{\rm{M}}\,{{\rm{s}}^{{\rm{ - 1}}}}\)
320153 For reaction, \(2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}\), the rate equation can be expressed in two ways \(-\dfrac{\mathrm{d}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]}{\mathrm{dt}}=\mathrm{k}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]\) and \(+\dfrac{\mathrm{d}\left[\mathrm{NO}_{2}\right]}{\mathrm{dt}}=\mathrm{k}^{\prime}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right] . \mathrm{k}\) and \(\mathrm{k}^{\prime}\) are related
320150
The rate constant of the reaction \({\rm{2}}{{\rm{H}}_{\rm{2}}}{{\rm{O}}_{\rm{2}}}{\rm{(aq)}} \to {\rm{2}}{{\rm{H}}_{\rm{2}}}{\rm{O(l) + }}{{\rm{O}}_{\rm{2}}}{\rm{(g)}}\)
At what concentration of \({{\rm{H}}_{\rm{2}}}{{\rm{O}}_{\rm{2}}}{\rm{,the}}\,\,{\rm{rate}}\,\,{\rm{of}}\,\,{\rm{reaction}}\,\,{\rm{will}}\,\,{\rm{be}}{\mkern 1mu} {\mkern 1mu} \,{\rm{2 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}\,{\rm{M}}\,{{\rm{s}}^{{\rm{ - 1}}}}\)
320153 For reaction, \(2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}\), the rate equation can be expressed in two ways \(-\dfrac{\mathrm{d}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]}{\mathrm{dt}}=\mathrm{k}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]\) and \(+\dfrac{\mathrm{d}\left[\mathrm{NO}_{2}\right]}{\mathrm{dt}}=\mathrm{k}^{\prime}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right] . \mathrm{k}\) and \(\mathrm{k}^{\prime}\) are related
320150
The rate constant of the reaction \({\rm{2}}{{\rm{H}}_{\rm{2}}}{{\rm{O}}_{\rm{2}}}{\rm{(aq)}} \to {\rm{2}}{{\rm{H}}_{\rm{2}}}{\rm{O(l) + }}{{\rm{O}}_{\rm{2}}}{\rm{(g)}}\)
At what concentration of \({{\rm{H}}_{\rm{2}}}{{\rm{O}}_{\rm{2}}}{\rm{,the}}\,\,{\rm{rate}}\,\,{\rm{of}}\,\,{\rm{reaction}}\,\,{\rm{will}}\,\,{\rm{be}}{\mkern 1mu} {\mkern 1mu} \,{\rm{2 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}\,{\rm{M}}\,{{\rm{s}}^{{\rm{ - 1}}}}\)
320153 For reaction, \(2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}\), the rate equation can be expressed in two ways \(-\dfrac{\mathrm{d}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]}{\mathrm{dt}}=\mathrm{k}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]\) and \(+\dfrac{\mathrm{d}\left[\mathrm{NO}_{2}\right]}{\mathrm{dt}}=\mathrm{k}^{\prime}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right] . \mathrm{k}\) and \(\mathrm{k}^{\prime}\) are related
320150
The rate constant of the reaction \({\rm{2}}{{\rm{H}}_{\rm{2}}}{{\rm{O}}_{\rm{2}}}{\rm{(aq)}} \to {\rm{2}}{{\rm{H}}_{\rm{2}}}{\rm{O(l) + }}{{\rm{O}}_{\rm{2}}}{\rm{(g)}}\)
At what concentration of \({{\rm{H}}_{\rm{2}}}{{\rm{O}}_{\rm{2}}}{\rm{,the}}\,\,{\rm{rate}}\,\,{\rm{of}}\,\,{\rm{reaction}}\,\,{\rm{will}}\,\,{\rm{be}}{\mkern 1mu} {\mkern 1mu} \,{\rm{2 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}\,{\rm{M}}\,{{\rm{s}}^{{\rm{ - 1}}}}\)
320153 For reaction, \(2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}\), the rate equation can be expressed in two ways \(-\dfrac{\mathrm{d}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]}{\mathrm{dt}}=\mathrm{k}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]\) and \(+\dfrac{\mathrm{d}\left[\mathrm{NO}_{2}\right]}{\mathrm{dt}}=\mathrm{k}^{\prime}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right] . \mathrm{k}\) and \(\mathrm{k}^{\prime}\) are related